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Chapter 1

Introduction

In complex systems understanding program behavior is not easy. Unsurprisingly in such systems,
software sometimes does not behave as expected. This may be due to a number of factors, for
example, interactions with other cores, software, peripherals, realtime events, poor implementations
or some combination of all of the above.

It is not always possible to use a debugger to observe behavior of a running system as this is
intrusive. Providing visibility of program execution is important. This needs to be done without
swamping the system with vast amounts of data.

One method of achieving this is via a Processor Branch Trace.

This works by tracking execution from a known start address and sending messages about the
address deltas taken by the program. These deltas are typically introduced by jump, call, return
and branch type instructions, although interrupts and exceptions are also types of deltas.

Conceptually, the system has one or more of the following fundamental components:

• A core with an instruction trace interface that outputs all relevant information to allow
the successful creation of a processor branch trace and more. This is a high bandwidth
interface: in most implementations, it will supply a large amount of data (instruction address,
instruction type, context information, ...) for each core execution clock cycle;

• A hardware encoder that connects to this instruction trace interface and compresses the
information into lower bandwidth trace packets;

• A transmission channel to transmit or a memory to store these trace packets;

• A decoder, usually software on an external PC, that takes in the trace packets and, with
knowledge of the program binary that’s running on the originating hart, reconstructs the
program flow. This decoding step can be done off-line or in real-time while the hart is
executing.

In RISC-V, all instructions are executed unconditionally or at least their execution can be deter-
mined based on the program binary. The instructions between the deltas can all be assumed to

1
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be executed sequentially. Because of this, there is no need to report sequential instructions in the
trace, only whether the branches were taken or not and the address of taken indirect branches
or jumps. If the program counter is changed by an amount that cannot be determined from the
execution binary, the trace decoder needs to be given the destination address (i.e. the address
of the next valid instruction). Examples of this are indirect branches or jumps, where the next
instruction address is determined by the contents of a register rather than a constant embedded in
the program binary.

Interrupts generally occur asynchronously to the program’s execution rather than intentionally as a
result of a specific instruction or event. Exceptions can be thought of in the same way, even though
they can be typically linked back to a specific instruction address. The decoder generally does
not know where an interrupt occurs in the instruction sequence, so the trace encoder must report
the address where normal program flow ceased, as well as give an indication of the asynchronous
destination which may be as simple as reporting the exception type. When an interrupt or exception
occurs, or the processor is halted, the final instruction retired beforehand must be included in the
trace.

This document serves to specify the ingress port (the signals between the RISC-V core and the
encoder), compressed branch trace algorithm and the packet format used to encapsulate the com-
pressed branch trace information.

1.1 Terminology

The following terms have a specific meaning in this specification.

• ATB: Arm trace bus

• branch: an instruction which conditionally changes the execution flow

• CSR: control/status register

• decoder: a piece of software that takes the trace packets emitted by the encoder and recon-
structs the execution flow of the code executed by the RISC-V hart

• delta: a change in the program counter that is other than the difference between two in-
structions placed consecutively in memory

• discontinuity: another name for ’delta’ (see above)

• ELF: executable and linkable format

• encoder: a piece of hardware that takes in instruction execution information from a RISC-V
hart and transforms it into trace packets

• EPC: exception program counter

• exception: an unusual condition occurring at run time associated with an instruction in a
RISC-V hart

• hart: a RISC-V hardware thread
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• interrupt: an external asynchronous event that may cause a RISC-V hart to experience an
unexpected transfer of control

• ISA: instruction set architecture

• jump: an instruction which unconditionally changes the execution flow

• direct jump: an instruction which unconditionally changes the execution flow by changing
the PC by a constant value

• indirect jump: an instruction which unconditionally changes the execution flow by changing
the PC to a computed value

• inferable jump: a jump where the target address is supplied via a constant embedded within
the jump opcode

• uninferable jump: a jump which is not inferable (see above)

• LSB: least significant bit

• MSB: most significant bit

• packet: the atomic unit of encoded trace information emitted by the encoder

• PC: program counter

• program counter: a register containing the address of the instruction being executed

• retire: the final stage of executing an instruction, when the machine state is updated (some-
times referred to as ’commit’ or ’graduate’)

• trap: the transfer of control to a trap handler caused by either an exception or an interrupt

• updiscon: contraction of ’uninferable PC discontinuity’

1.2 Nomenclature

In the following sections items in bold are signals or fields within a packet.

Items in bold italics are mnemonics for instructions or CSRs defined in the RISC-V ISA

Items in italics with names ending ’_p’ refer to parameters either built into the hardware or
configurable hardware values.
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Chapter 2

Encoder Control

This chapter describes the fields required to control the Trace Encoder. How fields are orga-
nized and accessed (e.g packet based or memory mapped) is outside the scope of this docu-
ment. A recommended register map can be found at https://github.com/riscv-non-isa/tg-nexus-
trace/blob/master/docs/RISC-V-Trace-Control-Interface.adoc#register-map.

Fields are categorized into the following groups:

• M: Mandatory

• O: Optional

• MD: Mandatory if data trace is supported

• OD: Optional for data trace

• F: Optional for filtering

Where an optional field provides a number of encoded options, implementers can chose to implement
a subset of the options, in which case the standard RISC-V WARL (write any, read legal) approach
can be used to determine which options are available.

Other abbreviations used in the tables are:

• W column heading indicates field width (in bits)

• G column heading indicates field group

• RW column heading indicates whether bit is read-only (R), or read-write (RW). For the
latter, it is allowed but not required that the bit be writable

• Rst column heading indicates field reset value. SD in this column indicates a system depen-
dent reset value

5
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2.1 Basic Control

The following fields control basic encoding behavior.
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Table 2.1: Basic Control
Field W G RW Rst Description
Active 1 M RW 0 Master enable for trace system. When 0, the trace

system may have clocks gated off or be powered
down, and other register locations may be inaccessible.
Hardware may take arbitrarily long to process power-
up or power-down and will indicate completion when
the read value of this bit matches the value written.

teEnable 1 M RW 0 Master trace enable. Trace can be enabled via iTrac-
ing or dTracing when 1. Setting to 0 flushes any
queued trace data to the designated sink.

iTracing 1 M RW 0 Instruction trace enable. When 1, trace will be gener-
ated, subject to any optional filtering. May be written
by software, or via triggers if iTrigEnable is 1.

dTracing 1 MD RW 0 Data trace enable. When 1, trace will be generated,
subject to any optional filtering. May be written by
software, or via triggers if dTrigEnable is 1.

iTrigEnable 1 O RW 0 When 1, allows iTracing to be set or cleared by trace-
on and trace-off Debug module triggers respectively
(see 4.2.4).

dTrigEnable 1 OD RW 0 When 1, allows dTracing to be set or cleared by trace-
on and trace-off Debug module triggers respectively
(see 4.2.4).

stallEnable 1 O RW 0 When 0, if the encoder cannot accept trace input from
the RISC-V hart, trace is lost, and is indicated via the
Support trace packet (see section 7.5).
When 1, the stall output signal is asserted to stall
the RISC-V hart until trace can be accepted (see ta-
ble 4.8).

Empty 1 O R 1 Reads as 1 when all trace has been emitted. Note: this
status is also indicated via the Support trace packet
(see table 7.4).

ResyncMode 2 M RW SD Selects the resynchronization mechanism. At least one
non-zero mechanism must be implemented.
0: Off
1: Count trace packets
2: Count clock cycles
3: Count instruction (16-bit) half-words

ResyncMax 4 O RW SD The maximum interval (in units determined by
ResyncMode) between synchronization packets (see
sections 7.2 and 7.3) is 2ResyncMax + 4.
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2.2 Optional Modes

See section 3.2 for details of the modes covered in this section.

Table 2.2: Optional and run-time configurable modes
Field W G RW Rst Description
FullAddress 1 O RW SD Send only full (non-differential) addresses when

set
ImplicitExcept 1 O RW SD When set, do not send exception address, only

exception cause in Exception packets (see ta-
ble 7.3)

siJump 1 O RW SD Do not treat sequentially inferrable jumps as un-
inferable PC discontinuities when set.

ImplicitReturn 1 O RW SD Do not treat returns as uninferable PC discon-
tinuities when set.

BranchPrediction 1 O RW SD Branch predictor enabled when set.
JumpTargetCache 1 O RW SD Jump target cache enabled when set.
noData 1 OD RW SD Omit data from data trace packets when set.
noAddress 1 OD RW SD Omit address from data trace packets when set.
DataCompress 2 OD RW SD Data trace compression selection:

0: Only send full (unmodified) addresses
1: Use XOR compression
2: Use differential compression
3: Dynamically select XOR or differential on
a per-packet basis in order to minimize packet
length

2.3 Filtering

See section 5 for details of the filtering capabilities covered in this section.

The fields in table 2.3 determine how filtering is applied to instruction and data trace. These are
an extension of the basic controls in table 2.1. Grouping all filters together as a single vector makes
it possible to enable or change the filtering selection of multiple filters simultaneously.

Table 2.3: Trace filtering selection
Field W G RW Rst Description
iFilters 16 O RW 0 Determine which filters qualify instruction trace. If bit

N is a 1 then instructions will be traced when filter N
matches. If all bits are 0, all instructions are traced.

dFilters 16 OD RW 0 Determine which filters qualify data trace. If bit N
is a 1 then data accesses will be traced when filter N
matches. If all bits are 0, all data accesses are traced.

The fields in table 2.4 must be replicated for each filter, and determine which HART inputs the
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filter is sensitive to.

Table 2.4: Filter Control
Field W G RW Rst Description
filterEnable 1 O RW 0 Overall filter enable.
matchComp1 1 O RW 0 When set, the output of the comparator selected

by comp1 must be high in order for the filter
to match.

comp1 3 O RW 0 Specifies the comparator unit to use for the 1st
comparison.

matchComp2 1 O RW 0 When set, the output of the comparator selected
by comp2 must be high in order for the filter
to match.

comp2 3 O RW 0 Specifies the comparator unit to use for the 2nd
comparison.

matchComp2 1 O RW 0 When set, the output of the comparator selected
by comp3 must be high in order for the filter
to match.

comp2 3 O RW 0 Specifies the comparator unit to use for the 3rd
comparison.

matchPrivilege 1 O RW 0 When set, match privilege levels specified by
matchChoicePrivilege.

matchEcause 1 O RW 0 When set, start matching from exception cause
codes specified by matchChoiceEcause, and
stop matching upon return from the 1st match-
ing exception.

matchInterupt 1 O RW 0 When set, start matching from a trap with the
interrupt level codes specified by matchVal-
ueInterrupt, and stop matching upon return
from the 1st matching trap.

matchImpdef 1 O RW 0 When set, match impdef values as specified
by matchValueImpdef and matchMaskIm-
pdef.

matchDtype 1 OD RW 0 When set, match dtype values as specified by
matchChoiceDtype.

matchDsize 1 OD RW 0 When set, match dsize values as specified by
matchChoiceDsize.

The fields in table 2.5 must be replicated for each filter, and determine the values the filter must
match for the HART inputs enabled via the fields in table 2.4.

The fields in tables 2.6 must be replicated for each comparator.
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Table 2.5: Filter Match Control
Field W G RW Rst Description
matchChoicePrivilege 8 O RW SD When matchPrivilege is set, match all priv-

ilege levels for which the corresponding bit is
set. For example, if bit N is 1, then match if
the priv value is N (see table 4.5 for privilege
level encoding).

matchValueInterrupt 1 O RW SD When matchinterrupt is set, match itype of
2 or 1 depending on whether this bit is 1 or 0
respectively.

matchChoiceEcause 32 O RW SD When matchEcause is set, match all excepion
causes for which the corresponding bit is set. For
example, if bit N is 1, then match if the cause
is N.

matchMaskImpdef See1 O RW SD When matchImpdef is set, match if
(impdef & matchMaskImpdef) ==
(matchValueImpdef & matchMaskIm-
pdef)

matchValueImpdef See1 O RW SD
matchChoiceDtype 16 O RW SD When matchDtype is set, match all data ac-

cess types for which the corresponding bit is set.
For example, if bit N is 1, then match if the
dtype is N.

matchChoiceDsize 8 O RW SD When matchDsize is set, match all data access
sizes for which the corresponding bit is set. For
example, if bit N is 1, then match if the dsize
is N.

1: impdef_width_p
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Table 2.6: comparator Control
Field W G RW Rst Description
pInput 2 O RW SD Determines which input bus to compare against the

primary comparator
0: iaddr
1: context
2: tval
3: daddr

sInput 2 O RW SD Determines which input bus to compare against the
secondary comparator. Encoding as per pInput

pFunction 3 O RW SD Selects the primary comparator function
0: selected input equal to pMatch
1: selected input not equal to pMatch
2: selected input less than pMatch
3: selected input less than or equal to pMatch
4: selected input greater than pMatch
5: selected input greater than or equal to pMatch
6: reserved (always match)
7: always match

sFunction 3 O RW SD Selects the secondary comparator function
0: selected input equal to sMatch
1: selected input not equal to sMatch
2: selected input less than sMatch
3: selected input less than or equal to sMatch
4: selected input greater than sMatch
5: selected input greater than or equal to sMatch
6: use sMatch as a mask for pMatch (always match)
7: always match

matchMode 2 O RW SD Determines which input bus to compare against the
primary comparator
0: primary function matches
1: primary and secondary functions both match:
(P&&S)
2: either primary or secondary function doesn’t
match: !(P&&S)
3: set when primary matches and continue to match
until after secondary matches

pMatch See1 O RW SD The match value for the primary comparator
sMatch See1 O RW SD The match value for the secondary comparator
pNotify 1 O RW 0 Generate a trace packet explicitly reporting the ad-

dress of the final instruction in a block that causes a
primary match (requires pInput to be 0). This is also
known as a watchpoint.

sNotify 1 O RW 0 Generate a trace packet explicitly reporting the ad-
dress of the final instruction in a block that causes a
secondary match (requires sInput to be 0). This is
also known as a watchpoint.

1: Max of supported input widths iaddress_width_p, context_width_p, daddress_width_p
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Chapter 3

Branch Trace

Instruction delta tracing, also known as branch tracing, works by tracking execution from a known
start address by sending information about the deltas taken by the program. Deltas are typically
introduced by jump, call, return and branch type instructions, although interrupts and exceptions
are also types of deltas.

Instruction delta tracing provides an efficient encoding of an instruction sequence by exploiting the
deterministic way the processor behaves based on the program it is executing.

The approach relies on an offline copy of the program binary being available to the decoder, so it
is generally unsuitable for either dynamic (self-modifying) programs or those where access to the
program binary is prohibited.

While the program binary is sufficient, access to the assembly or higher-level source code will
improve the ability of the decoder to present the decoded trace in the debugger by annotating the
traced instructions with source code line numbers and labels, variable names etc.

This approach can be extended to cope with small sections of deterministically dynamic code by
arranging for the decoder to request instruction memory from the target. Memory lookups generally
lead to a prohibitive reduction in performance, although they are suitable for examining modest
jump tables, such as the exception/interrupt vector pointers of an operating system which may be
adjusted at boot up and when services are registered. Both static and dynamically linked programs
can be traced using this approach. Statically linked programs are straightforward as they generally
operate in a known address space, often mapping directly to physical memory. Dynamically linked
programs require the debugger to keep track of memory allocation operations using either trace or
stop-mode debugging.

13



14 Efficient Trace for RISC-V Version 1.1.3-Frozen

3.1 Instruction delta trace concepts

3.1.1 Sequential instructions

For instruction set architectures such as RISC-V where all instructions are executed unconditionally
or at least their execution can be determined based on the program binary, the instructions between
the deltas are assumed to be executed sequentially. Consequently, there is no need to report them
in the trace. The trace only needs to contain whether branches were taken or not, the addresses of
taken indirect jumps, or other program counter discontinuities.

3.1.2 Uninferable PC discontinuities

An uninferable program counter discontinuity is a program counter change that can not be in-
ferred from the program binary alone. For these cases, the instruction delta trace must include a
destination address: the address of the next valid instruction.

Indirect jumps are an example of this, where the next instruction address is determined by the
contents of a register rather than a constant embedded in the program binary. In this case, the
address of the instruction following the jump (also known as the jump target) must be traced.

Interrupts and exceptions are another form of uninferable PC discontinuity; these are discussed in
detail below.

3.1.3 Branches

A branch is an instruction where a jump is conditional on the value of a register or a flag. For a
decoder to able to follow program flow, the trace must include whether a branch was taken or not.

For a direct branch, where the destination address is encoded in the program binary (either as a
constant, or as a constant offset from the program counter), no further information is required.
Direct branches are the only type of branch that is supported by the RISC-V ISA.

3.1.4 Interrupts and exceptions

Interrupts are a different type of delta that generally occur asynchronously to the program’s ex-
ecution rather than intentionally as a result of a specific instruction or event. Exceptions can be
thought of in the same way, even though they can be typically linked back to a specific instruction
address.

The decoder generally does not know where an interrupt occured in the instruction sequence, so
the trace must report the address where normal program flow ceased, as well as give an indication
of the asynchronous destination which may be as simple as reporting the exception type. When an
interrupt or exception occurs, the final instruction retired beforehand must be traced. Following
this the next valid instruction address (the first of the trap handler) must be traced.
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Note: not all exceptions and interrupts cause traps (see section 1.1 for definitions). Most notably,
floating point exceptions and disabled interrupts do not trap. If an exception or interrupt doesn’t
trap, the program counter does not change. So, there is no need to trace all exceptions/interrupts,
just traps. In this document, interrupts and exceptions are only traced when they cause traps to
be taken.

3.1.5 Synchronization

In order to make the trace robust there must be regular synchronization points within the trace.
Synchronization is accomplished by sending a full valued instruction address (and potentially a
context identifier). The decoder and debugger may also benefit from sending the reason for syn-
chronizing. The frequency of synchronization is a trade-off between robustness and trace bandwidth.

The instruction trace encoder needs to synchronise fully:

• For the first instruction traced after reset or resume from halt;

• Any time that an instruction is traced and the previous instruction was not traced;

• If the instruction is the first of an interrupt service routine or exception handler;

• After a prolonged period of time.

3.1.6 End of trace

If tracing stops for any reason, the address of the final traced instruction must be output.

Some examples of why tracing may stop are:

• The hart may be halted (entered debug mode);

• The hart may be reset;

• Encoding may be stopped (for example via a Trace-off trigger - see section 4.2.4);

• The matching criteria for any filtering capabilities implemented by the encoder may no longer
be met;

• The encoder may be disabled.

3.2 Optional and run-time configurable modes

An instruction trace encoder may support multiple tracing modes. To ensure that the decoder
treats the incoming packets correctly, it needs to be informed of the current active configuration.
The configuration is reported by a packet that is issued by the encoder whenever the encoder
configuration is changed.
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Here are common examples of such modes:

• delta address mode: program counter discontinuities are encoded as differences instead of
absolute address values.

• full address mode: program counter discontinuities are encoded as absolute address values.

• implicit exception mode: the destination address of an exception (i.e. the address of the
exception trap) is assumed to be known by the decoder, and thus not encoded in the trace.

• Sequentially inferable jump mode: The target of an indirect jump can be inferred by consid-
ering the combined effect of two instructions.

• implicit return mode: the destination address of function call returns is derived from a call
stack, and thus not encoded in the trace.

• branch prediction mode: branches that are predicted correctly by an encoder branch predictor
(and an identical copy in the decoder) are not encoded as taken/non-taken, but as a more
efficient branch count number.

• Jump target cache mode: Rather than reporting the address of an uninferable jump target,
efficiency can be improved by caching recent jump targets, and reporting the cache entry
index instead.

Modes may have associated parameters; see Table 10.1 for further details.

All modes are optional apart from delta address mode, which must be supported.

3.2.1 Delta address mode

Related parameters: None

In delta address mode, addresses are encoded as the difference between the actual address of the
current instruction and the actual address of the instruction reported in the previous packet that
contained an address. This differential encoding requires fewer bits than the full address, and thus
results in more efficient trace compression.

3.2.2 Full address mode

Related parameters: None

In full address mode, all addresses in the trace are encoded as absolute addresses instead of in
differential form. This kind of encoding is always less efficient, but it can be a useful debugging aid
for software decoder developers.
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3.2.3 Implicit exception mode

Related parameters: None

The RISC-V Privileged ISA specification stores exception handler base addresses in the
utvec/stvec/vstvec/mtvec CSR registers. In some RISC-V implementations, the lower address
bits are stored in the ucause/scause/vscause/mcause CSR registers.

By default, both the *tvec and *cause values are reported when an exception or interrupt occurs.

The implicit exception mode omits *tvec (the trap handler address), from the trace and thus
improves efficiency.

This mode can only be used if the decoder can infer the address of the trap handler from just the
exception cause.

3.2.4 Sequentially inferable jump mode

Related parameters: sijump_p.

By default, the target of an indirect jump is always considered an uninferable PC discontinuity.
However, if the register that specifies the jump target was loaded with a constant then it can be
considered inferable under some circumstances. The hart must identify jumps with sequentially
inferable targets and provide this information separately to the encoder. The final decision as to
whether to treat the jump as inferable or not must be made by the encoder. Both the constant
load and the jump must be traced in order for the decoder to be able to infer the jump target. See
Section 4.1.1 for details of what constitutes a sequentially inferable jump.

3.2.5 Implicit return mode

Related parameters: call_counter_size_p, return_stack_size_p, itype_width_p.

Although a function return is usually an indirect jump, well behaved programs return to the
point in the program from which the function was called using a standard calling convention. For
those programs, it is possible to determine the execution path without being explicitly notified
of the destination address of the return. The implicit return mode can result in very significant
improvements in trace encoder efficiency.

Returns can only be treated as inferable if the associated call has already been reported in an earlier
packet. The encoder must ensure that this is the case. This can be accomplished by utilizing a
counter to keep track of the number of nested calls being traced. The counter increments on calls
(but not tail calls), and decrements on returns (see Section 4.1.1 for definitions). The counter will
not over or underflow, and is reset to 0 whenever a synchronization packet is sent. Returns will be
treated as inferable and will not generate a trace packet if the count is non-zero (i.e. the associated
call was already reported in an earlier packet).

Such a scheme is low cost, and will work as long as programs are "well behaved". The encoder does
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not check that the return address is actually that of the instruction following the associated call.
As such, any program that modifies return addresses cannot be traced using this mode with this
minimal implementation.

Alternatively, the encoder can maintain a stack of expected return addresses, and only treat a
return as inferable if the actual return address matches the prediction. This is fully robust for all
programs, but is more expensive to implement. In this case, if a return address does not match the
prediction, it must be reported explicitly via a packet, along with the number of return addresses
currently on the stack. This ensures that the decoder can determine which return is being reported.

3.2.6 Branch prediction mode

Related parameters: bpred_size_p.

Without branch prediction, the outcome of each executed branch is stored in a branch map: a bit
vector in which the taken/non-taken status of each branch is stored in chronological order.

While this encoding is efficient, at 1 bit per branch, there are some cases where this can still result
in a relatively large volume of trace packets. For example:

• Executing tight loops of code containing no uninferable jumps. Each iteration of the loop
will add a bit to the branch map;

• Sitting in an idle loop waiting for an interrupt. This produces large amounts of trace when
nothing of any interest is actually happening!

• Breakpoints, which in some implementations also spin in an idle loop.

A significant coding efficiency can be obtained by the addition of a branch predictor in the encoder.
To keep the encoder and decoder synchronized, a predictor with identical behavior will need to be
implemented in the decoder software.

The predictor shall comprise a lookup table of 2bpred_size_p entries. Each entry is indexed by bits
bpred_size_p:1 of the instruction address (or bpred_size_p+1:2 if compressed instructions aren’t
supported), and each contains a 2-bit prediction state:

• 00: predict not taken, transition to 01 if prediction fails;

• 01: predict not taken, transition to 00 if prediction succeeds, else 11;

• 11: predict taken, transition to 10 if prediction fails;

• 10: predict taken, transition to 11 if prediction succeeds, else 00.

The MSB represents the predicted outcome, the LSB the most recent actual outcome. The predic-
tion must fail twice for the predicted value to change.

The lookup table entries are initialized to 01 when a synchronization packet is sent.
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Other predictors, such as the gShare predictor (see Hennessy & Patterson), should be considered.
Some further experimentation is needed to determine the benefits of different lookup table sizes
and predictor algorithms.

3.2.7 Jump target cache mode

Related parameters: cache_size_p.

By default, the target address of an uninferable jump is output in the trace, usually in differential
form. If the same function is called repeatedly, (for example, in a loop), the same address will be
output repeatedly.

An efficiency gain can be obtained by the addition of a jump target cache to the encoder. To keep
the encoder and decoder synchronized, a cache with identical behavior will need to be implemented
in the decoder software. Even a small cache can provide significant improvement.

The cache shall comprise 2cache_size_p entries, each of which can contain an instruction address. It
will be direct mapped, with each entry indexed by bits cache_size_p:1 of the instruction address
(or cache_size_p+1:2 if compressed instructions aren’t supported).

Each uninferable jump target is first compared with the entry at its index in the cache. If it is
found in the cache, the index number is traced rather than the target address. If it is not found in
the cache, the entry at that index is replaced with the current instruction address.

The cache entries are all invalidated when a synchronization packet is sent.
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Chapter 4

Hart to encoder interface

4.1 Instruction Trace Interface requirements

This section describes in general terms the information which must be passed from the RISC-V
hart to the trace encoder for the purposes of Instruction Trace, and distinguishes between what is
mandatory, and what is optional.

The following information is mandatory:

• The number of instructions that are being retired;

• Whether there has been an exception or interrupt, and if so the cause (from the ucause/s-
cause/vscause/mcause CSR) and trap value (from the utval/stval/vstval/mtval CSR).
The register set to output should be the set that is updated as a result of the exception (i.e.
the set associated with the privilege level immediately following the exception);

• The current privilege level of the RISC-V hart;

• The instruction_type of retired instructions for:

– Jumps with a target that cannot be inferred from the source code;
– Taken and nontaken branches;
– Return from exception or interrupt (*ret instructions).

• The instruction_address for:

– Jumps with a target that cannot be inferred from the source code;
– The instruction retired immediately after a jump with a target that cannot be inferred

from the source code (also referred to as the target or destination of the jump);
– Taken and nontaken branches;
– The last instruction retired before an exception or interrupt;
– The first instruction retired following an exception or interrupt;

21
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– The last instruction retired before a privilege change;
– The first instruction retired following a privilege change.

The following information is optional:

• Context or Time information:

– The context and/or hart ID and/or time;
– The type of action to take when context or time data changes.

• The instruction_type of instructions for:

– Calls with a target that cannot be inferred from the source code;
– Calls with a target that can be inferred from the source code;
– Tail-calls with a target that cannot be inferred from the source code;
– Tail-calls with a target that can be inferred from the source code;
– Returns with a target that cannot be inferred from the source code;
– Returns with a target that can be inferred from the source code;
– Co-routine swap;
– Jumps which don’t fit any of the above classifications with a target that cannot be

inferred from the source code;
– Jumps which don’t fit any of the above classifications with a target that can be inferred

from the source code.

• If context or time is supported then the instruction_address for:

– The last instruction retired before a context or a time change;
– The first instruction retired following a context or time change.

• Whether jump targets are sequentially inferable or not.

The mandatory information is the bare-minimum required to implement the branch trace algorithm
outlined in Chapter 9. The optional information facilitates alternative or improved trace algorithms:

• Implicit return mode (see Section 3.2.5) requires the encoder to keep track of the number of
nested function calls, and to do this it must be aware of all calls and returns regardless of
whether the target can be inferred or not;

• A simpler algorithm useful for basic code profiling would only report function calls and returns,
again regardless of whether the target can be inferred or not;

• Branch prediction techniques can be used to further improve the encoder efficiency, particu-
larly for loops (see Section 3.2.6). This requires the encoder to be aware of the address of all
branches, whether they are taken or not.

• Uninferable jumps can be treated as inferable (which don’t need to be reported in the trace
output) if both the jump and the preceding instruction which loads the target into a register
have been traced.
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4.1.1 Jump classification and target inference

Jumps are classified as inferable, or uninferable. An inferable jump has a target which can be
deduced from the binary executable or representation thereof (e.g. ELF). For the purposes of this
specification, the following strict definition applies:

If the target of a jump is supplied via a constant embedded within the jump opcode, it is classified
as inferable. Jumps which are not inferable are by definition uninferable.

However, there are some jump targets which can still be deduced from the binary executable
by considering pairs of instructions even though by the above definition they are classified as
uninferable. Specifically, jump targets that are supplied via

• an lui or c.lui (a register which contains a constant), or

• an auipc (a register which contains a constant offset from the PC).

Such jump targets are classified as sequentially inferable if the pair of instructions are retired
consecutively (i.e. the auipc, lui or c.lui immediately precedes the jump). Note: the restriction
that the instructions are retired consecutively is necessary in order to minimize the additional
signalling needed between the hart and the encoder, and should have a minimal impact on trace
efficiency as it is anticipated that consecutive execution will be the norm. Support for sequentially
inferable jumps is optional.

Jumps may optionally be further classified according to the recommended calling convention:

• Calls:

– jal x1;
– jal x5;
– jalr x1, rs where rs != x5;
– jalr x5, rs where rs != x1;
– c.jalr rs1 where rs1 != x5;
– c.jal.

• Tail-calls:

– jal x0;
– c.j;
– jalr x0, rs where rs != x1 and rs != x5;
– c.jr rs1 where rs1 != x1 and rs1 != x5.

• Returns:

– jalr rd, rs where (rs == x1 or rs == x5) and rd != x1 and rd != x5;
– c.jr rs1 where rs1 == x1 or rs1 == x5.
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• Co-routine swap:

– jalr x1, x5;
– jalr x5, x1;
– c.jalr x5.

• Other :

– jal rd where rd != x1 and rd != x5;
– jalr rd, rs where rs != x1 and rs != x5 and rd != x0 and rd != x1 and rd != x5.

4.1.2 Relationship between RISC-V core and the encoder

The encoder is intended to encode the instructions executed on a single hart.

It is however commonplace for a RISC-V core to contain multiple harts. This can be supported by
the core in several different ways:

• Implement a separate instance of the interface per hart. Each instance can be connected to a
separate encoder instance, allowing all harts to be traced concurrently. Alternatively, external
muxing may be used in conjunction with a single encoder in order to trace one particular
hart at a time;

• Implement a singe interface for the core, with muxing inside the core to select which hart to
connect to the interface.

(Whilst it is technically feasible to use a single encoder with multiple harts operating in a fine-
grained multi-threaded configuration, the frequent context changes that would occur as a result of
thread-switching would result in extremely poor encoding efficiency, and so this configuration is
not recommended.)

4.2 Instruction Trace Interface

This section describes the interface between a RISC-V hart and the trace encoder that conveys the
information described in the section 4.1. Signals are assigned to one of the following groups:

• M: Mandatory. The interface must include an instance of this signal.

• O: Optional. The interface may include an instance of this signal.

• MR: Mandatory, may be replicated. For harts that can retire a maximum of N "special"
instructions per clock cycle, the interface must include N instances of this signal.

• OR: Optional, may be replicated. For harts that can retire a maximum of N "special" per
clock cycle, the interface must include zero or N instances of this signal.
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• BR: Block, may be replicated. Mandatory for harts that can retire multiple instructions in a
block. Replication as per OR. If omitted, the interface must include SR group signals instead.

• SR: Single, may be replicated. Mandatory for harts that can only retire one instruction in a
block. Replication as per OR (see section 4.2.2). If omitted, the interface must include BR
group signals instead.

"Special" instructions are those that require itype to be non-zero.

Table 4.1: Instruction interface signals
Signal Group Function
itype[itype_width_p-1:0] MR Termination type of the instruction block. En-

coding given in Table 4.4 (see Section 4.1.1 for
definitions of codes 6 - 15).

cause[ecause_width_p-1:0] M Exception or interrupt cause (ucause/scause/
vscause/mcause). Ignored unless itype=1 or
2.

tval[iaddress_width_p-1:0] M The associated trap value, e.g. the faulting vir-
tual address for address exceptions, as would
be written to the utval/stval/vstval/mtval
CSR. Future optional extensions may define
tval to provide ancillary information in cases
where it currently supplies zero. Ignored unless
itype=1.

priv[privilege_width_p-1:0] M Privilege level for all instructions retired on this
cycle. Encoding given in Table 4.5. Codes 4-7
optional.

iaddr[iaddress_width_p-1:0] MR The address of the 1st instruction retired in this
block. Invalid if iretire=0 unless itype=1, in
which case it indicates the address of the instruc-
tion which incurred the exception.

context[context_width_p-1:0] O Context for all instructions retired on this cycle.
time[time_width_p-1:0] O Time generated by the core.
ctype[ctype_width_p-1:0] O Reporting behavior for context. Encoding

given in Table 4.6. Codes 2-3 optional.
sijump OR If itype indicates that this block ends with an

uninferable discontinuity, setting this signal to
1 indicates that it is sequentially inferable and
may be treated as inferable by the encoder if the
preceding auipc, lui or c.lui has been traced.
Ignored for itype codes other than 6, 8, 10, 12
or 14.

Tables 4.1 and 4.2 list the signals in the interface designed to efficiently support retirement of
multiple instructions per cycle. The following discussion describes the multiple-retirement behavior.
However, for harts that can only retire one instruction at a time, the signalling can be simplified,
and this is discussed subsequently in Section 4.2.1.
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Table 4.2: Instruction interface signals - multiple retirement per block
Signal Group Function
iretire[iretire_width_p-1:0] BR Number of halfwords represented by instructions

retired in this block.
ilastsize[ilastsize_width_p-1:0] BR The size of the last retired instruction is 2ilastsize

half-words.

Table 4.3: Instruction interface signals - single retirement per block
Signal Group Function
iretire[0:0] SR Number of instructions retired in this block (0

or 1).
ilastsize[ilastsize_width_p-1 :0] SR The size of the retired instruction is 2ilastsize

half-words.

Table 4.4: Instruction Type (itype) encoding
Value Description
0 Final instruction in the block is none of the other named itype codes
1 Exception. An exception that traps occurred following the final retired instruction

in the block
2 Interrupt. An interrupt that traps occurred following the final retired instruction in

the block
3 Exception or interrupt return
4 Nontaken branch
5 Taken branch
6 Uninferable jump if itype_width_p is 3, reserved otherwise
7 reserved
8 Uninferable call
9 Inferrable call
10 Uninferable tail-call
11 Inferrable tail-call
12 Co-routine swap
13 Return
14 Other uninferable jump
15 Other inferable jump

Table 4.5: Privilege level (priv) encoding
Value Description
0 U
1 S/HS
2 reserved
3 M
4 D (debug mode)
5 VU
6 VS
7 reserved
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The information presented in a block represents a contiguous block of instructions starting at
iaddr, all of which retired in the same cycle. Note if itype is 1 or 2 (indicating an exception or
an interrupt), the number of instructions retired may be zero. cause and tval are only defined if
itype is 1 or 2. If iretire=0 and itype=0, the values of all other signals are undefined.

iretire contains the number of (16-bit) half-words represented by instructions retired in this block,
and ilastsize the size of the last instruction. Half-words rather than instruction count enables the
encoder to easily compute the address of the last instruction in the block without having access to
the size of every instruction in the block.

itype can be 3 or 4 bits wide. If itype_width_p is 3, a single code (6) is used to indicate all
uninferable jumps. This is simpler to implement, but precludes use of the implicit return mode
(see section 3.2.5), which requires jump types to be fully classified.

Whilst iaddr is typically a virtual address, it does not affect the encoder’s behavior if it is a physical
address.

For harts that can retire a maximum of N non-zero itype values per clock cycle, the signal groups
MR, OR and either BR or SR must be replicated N times. Typically N is determined by the
maximum number of branches that can be retired per clock cycle. Signal group 0 represents
information about the oldest instruction block, and group N-1 represents the newest instruction
block. The interface supports no more than one privilege change, context change, exception or
interrupt per cycle and so signals in groups M and O are not replicated. Furthermore, itype can
only take the value 1 or 2 in one of the signal groups, and this must be the newest valid group (i.e.
iretire and itype must be zero for higher numbered groups). If fewer than N groups are required
in a cycle, then lower numbered groups must be used first. For example, if there is one branch,
use only group 0, if there are two branches, instructions up to the 1st branch must be reported in
group 0 and instructions up to the 2nd branch must be reported in group 1 and so on.

sijump is optional and may be omitted if the hart does not implement the logic to detect sequen-
tially inferable jumps. If the encoder offers an sijump input it must also provide a parameter
to indicate whether the input is connected to a hart that implements this capability, or tied off.
This is to ensure the decoder can be made aware of the hart’s capability. Enabling sequentially
inferable jump mode in the encoder and decoder when the hart does not support it will prevent
correct reconstruction by the decoder.

The context and/or the time field can be used to convey any additional information to the decoder.
For example:

• The address space and virtual machine IDs (ASID and VMID respectively). Where present
it is recommended these values be wired to bits [15:0] and [29:16];

• The software thread ID;

• The process ID from an operating system;

• It could be used to convey the values of CSRs to the decoder by setting context to the CSR
number and value when a CSR is written;

• In cases where a single encoder is being shared amongst multiple harts (see section 4.1.2),
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it could also be used to indicate the hart ID, in cases where the hart ID can be changed
dynamically.

• Time from within the hart

Table 4.6 specifies the actions for the various ctype values. A typical behavior would be for this
signal to remain zero except on the 1st retirement after a context change or when a time value
should be reported. ctype_width_p may be 1 or 2. The reduced width option only provides support
for reporting context changes imprecisely.

Table 4.6: Context type ctype values and corresponding actions
Type Value Actions
Unreported 0 No action (don’t report context).
Report context imprecisely 1 An example would be a SW thread or operating sys-

tem process change.
Report the new context value at the earliest conve-
nient opportunity.
It is reported without any address information, and
the assumption is that the precise point of context
change can be deduced from the source code (e.g. a
CSR write).

Report context precisely 2 Report the address of the 1st instruction retired in this
block, and the new context.
If there were unreported branches beforehand, these
need to be reported first.
Treated the same as a privilege change.

Report context as an 3 An example would be a change of hart.
asynchronous discontinuity Need to report the last instruction retired on the pre-

vious context, as well as the 1st on the new context.
Treated the same as an exception.

4.2.1 Simplifications for single-retirement

For harts that can only retire one instruction at a time, the interface can be simplified to the signals
listed in tables 4.1 and 4.3. The simplifications can be summarized as follows:

• iretire simply indicates whether an instruction retired or not;

Note: ilastsize is still needed in order to determine the address of the next instruction, as this is
the predicted return address for implicit return mode (see Section 3.2.5).

The parameter retires_p which indicates to the encoder the maximum number of instructions
that can be retired per cycle can be used by an encoder capable of supporting single or multiple
retirement to select the appropriate interpretation of iretire.
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4.2.2 Alternative multiple-retirement interface configurations

For a hart that can retire multiple instructions per cycle, but no more than one branch, the preferred
solution is to use one instance of signals from groups BR, MR and OR. However, if the hart can
retire N branches in a cycle, N instances of signals from groups MR, OR and either SR or BR must
be used (each instance can be either a single instruction or a block).

If the hart can retire N instructions per cycle, but only one branch, it is allowed (though not
recommended) to provide explicit details of every instruction retired by using N instances of signals
from groups SR, MR and OR.

4.2.3 Optional sideband signals

Optional sideband signals may be included to provide additional functionality, as described in tables
4.7 and 4.8.

Note, any user defined information that needs to be output by the encoder will need to be applied
via the context input.

Table 4.7: Optional sideband encoder input signals
Signal Group Function
impdef [impdef_width_p-1:0] O Implementation defined sideband signals. A typical

use for these would be for filtering (see Chapter 5.
trigger[2+:0] [1:0]: O

[2+]: OR
A pulse on bit 0 will cause the encoder to start
tracing, and continue until further notice, subject
to other filtering criteria also being met.
A pulse on bit 1 will cause the encoder to stop
tracing until further notice. See section 4.2.4).

halted O Hart is halted. Upon assertion, the encoder will
output a packet to report the address of the last in-
struction retired before halting, followed by a sup-
port packet to indicate that tracing has stopped.
Upon deassertion, the encoder will start tracing
again, commencing with a synchronization packet.
Note: If this signal is not provided, it is strongly
recommended that Debug mode can be signalled
via a 3-bit privilege signal. This will allow trac-
ing in Debug mode to be controlled via the optional
filtering capabilities.

reset O Hart is in reset. Provided the encoder is in a differ-
ent reset domain to the hart, this allows the encoder
to indicate that tracing has ended on entry to re-
set, and restarted on exit. Behavior is as described
above for halt.
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Table 4.8: Optional sideband encoder output signals
Signal Group Function
stall O Stall request to hart. Some applications may require lossless trace, which

can be achieved by using this signal to stall the hart if the trace encoder
is unable to output a trace packet (for example due to back-pressure from
the packet transport infrastructure).

4.2.4 Using trigger outputs from the Debug Module

The debug module of the RISC-V hart may have a trigger unit. This defines a match control
register (mcontrol) containing a 4-bit action field, and reserves codes 2 - 5 of this field for trace
use. These action codes are hereby defined as shown in table 4.9. If implemented, each action must
generate a pulse on an output from the hart, on the same cycle as the instruction which caused the
trigger is retired.

Table 4.9: Debug Module trigger support (mcontrol action)
Value Description
2 Trace-on. This should be connected to trigger[0] if the encoder provides it.
3 Trace-off. This should be connected to trigger[1] if the encoder provides it.
4 Trace-notify. This should be connected to trigger[1 + blocks:2] if the encoder

provides it. This will cause the encoder to output a packet containing the address
of the last instruction in the block if it is enabled. One bit per block.

Trace-on and Trace-off actions provide a means for the hart to control when tracing starts and
stops. It is recommended that tracing starts from the oldest instruction retired in the cycle that
Trace-on is asserted, and stops following the newest instruction retired in the cycle that Trace-off
is asserted (subject to any optional filtering).

Trace-notify provides means to ensure that a specified instruction is explicitly reported (subject to
any optional filtering). This capability is sometimes known as a watchpoint.

4.2.5 Example retirement sequences

Table 4.10: Example 1 : 9 Instructions retired over four cycles, 2 branches
Retired Instruction Trace Block
1000: divuw iretire=7, iaddr=0x1000, itype=8
1004: add
1008: or
100C: c.jalr
0940: addi iretire=3, iaddr=0x0940, itype=4
0944: c.beq
0946: c.bnez iretire=1, iaddr=0x0946, itype=5
0988: lbu iretire=4, iaddr=0x0988, itype=0
098C: csrrw
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4.3 Data Trace Interface requirements

This section describes in general terms the information which must be passed from the RISC-V hart
to the trace encoder for the purposes of Data Trace, and distinguishes between what is mandatory,
and what is optional.

If Data Trace is not needed in a system then there is no requirement for the RISC-V hart to supply
any of the signals in section 4.4.

Data trace supports up to four data access types: load, store, atomic and CSR. Support for both
atomic and CSR accesses are independently optional.

The signalling protocol can take one of two forms, depending on the needs of the RISC-V hart:
unified or split.

Unified is the simplest form, suitable for simpler, in-order harts. In this form, all information about
a data access is signalled by the RISC-V hart in the same cycle that the associated data access
instruction is reported on the instruction trace interface.

For harts with out of order or speculative execution capabilities, many loads may be in progress
simultaneously, and this approach is not practical as it would require the hart to maintain a large
amount of state relating to all the in-progress loads. For this reason, the interface also supports
splitting loads into two parts:

• The request phase provides all the information about the load that originates from the hart
(address, size, etc.) when the instruction retires;

• The response phase provides the data and response status when it has been returned to the
hart from the memory system.

The two parts of a split load are associated by use of a transaction ID.

The code size working group is proposing push and pop instructions, which will each potentially
result in multiple loads or stores. In this case, the resulting loads and stores must be reported
individually on the interface. If an exception occurs part way through the sequence of loads or
stores initiated by such an instruction, and the instruction is re-executed after the exception handler
has been serviced, the load or store sequence must recommence from the beginning.

4.4 Data Trace Interface

This section describes the interface between a RISC-V hart and the trace encoder that conveys the
information described in the section 4.3. Signals are assigned to one of the following groups:

• M: Mandatory. The interface must include an instance of this signal;

• U: Unified. Mandatory for unified signalling;
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• S: Split. Mandatory for split load signalling;

• O: Optional. The interface may include an instance of this signal.

Table 4.11: Data interface signals
Signal Group Function
dretire M Data access retired (when high)
dtype[dtype_width_p-1:0] M Data access type. Encoding given in Table 4.12
daddr[daddress_width_p-1:0] M The data access address
dsize[dsize_width_p-1:0] M The data access size is 2dsize bytes
data[data_width_p-1:0] U The data
iaddr_lsbs[iaddr_lsbs_width_p-1:0] O LSBs of the data access instruction address. Re-

quired if retires_p > 1
dblock[dblock_width_p-1:0] O Instruction block in which the data access in-

struction is retired. Required if there are repli-
cated instruction block signals

lrid[lrid_width_p-1:0] S Load request ID. Valid when dretire is high
lresp[lresp_width_p-1:0] S Load response:

0: None
1: reserved
2: Okay. Load successful; ldata valid
3: Error. Load failed; ldata not valid

lid[lrid_width_p-1:0] S Split Load ID. Valid when lresp is non-zero
sdata[sdata_width_p-1:0] S Store data. Valid when dretire is high
ldata[ldata_width_p-1:0] S Load data. Valid when lresp is non-zero

All signals in M, U and O groups are only valid when dretire is high. Signals in the S group are
valid as indicated in table 4.11.

For harts that can retire a maximum of M data accesses per cycle, the implemented signal groups
must be replicated M times. If fewer than M groups are required in a cycle, then lower numbered
groups must be used first. For example, if there is one data access, use only group 0.

The maximum value of dtype_width_p is 4. However, if only loads and stores are supported,
dtype_width_p can be 1. If CSRs are supported but atomics are not, dtype_width_p can be 3.

Atomic and CSR accesses have either both load and store data, or store data and an operand. For
CSRs and unified atomics, both values are reported via data, with the store data in the LSBs and
the load data or operand in the MSBs.

lrid_width_p is determined by the maximum number of loads that can be in progress simulta-
neously, such that at any one time there can be no more than one load in progress with a given
ID.

iaddr_lsbs and dblock are provided to support filtering of which data accesses to trace based on
their instruction address. This is best illustrated by considering the following instruction sequence:

1. load
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Table 4.12: Data access type (dtype) encoding
Value Description
0 Load
1 Store
2 reserved
3 reserved
4 CSR read-write
5 CSR read-set
6 CSR read-clear
7 reserved
8 Atomic swap
9 Atomic add
10 Atomic AND
11 Atomic OR
12 Atomic XOR
13 Atomic max
14 Atomic min
15 Conditional store failure

2. <some non data access instruction>

3. load

4. <some non data access instruction>

5. <some non data access instruction>

Suppose the hart is capable of retiring up to 4 instructions in a cycle, via a single block. Instruction
trace is enabled throughout, but the requirement is to collect data trace for the 1st load (instruction
1), and filtering is configured to match the address of this instruction only. However, information
about instruction addresses is passed to the encoder at the block level, and the block boundaries
are invisible to the decoder. For instruction trace, all instructions in a block are traced if any of
the instructions in that block match the filtering criteria. That is fine for instruction trace - the
address of the 1st and last traced instruction are output explicitly. There will be some fuzziness
about precisely what those addresses will be depending on where the block boundaries fall, but this
is not a concern as everything is always self-consistent.

However, that is not the case for data trace. Consider two scenarios:

• Case 1: 1st block contains instructions 1, 2, 3; second block contains 4, 5

• Case 2: 1st block contains instructions 1, 2; second block contains 3, 4, 5

Given that iretire is non-zero in the same cycle that the data access retires, the encoder knows the
address of the 1st and last instructions in a block, but does not know precisely where in the block
the data access is. In both cases, the first block matches the filtering criteria (it contains the address
of instruction 1), and the second block does not. But if the encoder traced all the data accesses in
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the matching block, then in case 1 it would trace both instructions 1 and 3, whereas in the second
case it would trace only instruction 1. The decoder has no visibility of the block boundaries so
cannot account for this. It is expecting only instruction 1 to be traced, and so may misinterpret
instruction 3. If this code is in a loop for example, it will assume that the 2nd traced load is in
fact instruction 1 from the next loop iteration, rather than instruction 3 from this iteration.

Providing the LSBs of the data access instruction address allows the decoder to determine precisely
whether the data access should be traced or not, and removes the dependency on the block sizes
and boundaries. The number of bits required is one more bit than the number required to index
within the block because blocks can start on any half-word boundary.

For harts that replicate the block signals to allow multiple blocks to retire per cycle it is also
necessary to indicate which block each data access is associated with, so the encoder knows which
block address to combine with the LSBs in order to construct the actual data access instruction
address. 1 bit for 2 blocks per cycle, 2 bits for 4, and so on.



Chapter 5

Filtering

The contents of this chapter are informative only.

Filtering provides a mechanism to control whether the encoder should produce trace. For example,
it may be desirable to trace:

• When the instruction address is within a particular range;

• Starting from one instruction address and continuing until a second instruction address;

• For one or more specified privilege levels;

• For a particular context or range of contexts;

• Exception and/or interrupt handlers for specified exception causes or with particular tval
values;

• Based on values applied to the impdef or trigger signals;

• For a fixed period of time

• etc.

How this is accomplished is implementation specific.

One suggested implementation partitions the architecture into filters and comparators in order
to provide maximum flexibility at low cost. The number of filters and comparators is system
dependent.

Each comparator unit is actually a pair of comparators (Primary and Secondary, or P, S) allowing
a bounded range to be matched with a single unit if required, and offers:

• input selected from iaddress, context and tval (and daddress if data trace is supported);

• A range of arithmetic options (<, >, =, !=, etc) independently selectable for each comparator;

35
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• Secondary match value may be used as a mask for the primary comparator;

• The two comparators can be combined in several ways: P, P&&S, !(P&&S), latch (set on P
clear on S);

• Each comparator can also be used to explcitly report a particular instruction address (i.e.
generate a watchpoint).

Each filter can specify filtering against instruction and optionally data trace inputs from the HART,
and offers:

• Require up to 3 run-time selectable comparator units to match;

• Multiple choice selection for priv and cause inputs (and dtype if data trace is supported);

• Masked matching for interrupt and impdef inputs.

Allowing for up to 3 comparators allows for simultaneous matching on Address, Trap value and
context (unlikely, but should not be architecturally precluded).

The filtering configuration fields are detailed in section 2. These support the architecture described
above, though will also support simpler implementations, for example where the comparator func-
tion is more tightly coupled with each filter, or where filtering is provided on only some inputs
(such as just instruction address).



Chapter 6

Timestamping

The support for Timestamps is optional and so the contents of this chapter are informative only.

In many systems it is desirable to periodically insert a timestamp packet into the trace stream,
effectively marking that point in the stream with a time value.

This can be used to judge "time" between various point in the trace stream and, more notably, to
be able to correlate trace streams from different harts (i.e. this point in hart A’s stream occurred
at roughly the same time as that point in hart B’s trace stream). The former helps one to judge
performance of sections of code execution (to the granularity of timestamp insertion). The latter
helps debugging multi-hart MP problems.

An implementation may have the following:

• A timestamp is (up to) a 64-bit time value.

• Configurable options for generating timestamp values such as a hart’s ’time’ values or ’cy-
cle’values.

• Options could may also include things like taking ’time’ values with the low 4 or 8 bits
dropped off which would create a coarser granularity time values

• Timestamp generation may be enabled or disabled. If enabled, a timestamp packet would be
generated periodically which may be based on configurable interval or rate, e.g. once every 2n

items where ’n’ and ’items’ are configurable among some limited set of choices. The choices
could be:

– Time
– Time scaled down. An implementation specific scaled or divided down derivative of time.

This may be useful in providing a smaller coarser graularity values
– Time Interpolated up. An implementation specific interpolated up derivative of time.

This may be useful in providing higher resolution time values
– Cycle
– Implementation specific

37
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• A timestamp packet may also be generated in conjunction with a sync packet

• Timestamp packets are highly compressible and variable in size depending on the number
of low bits of the current value that have changed wrt the last emitted timestamp value. If
timestamp packets are emitted rarely (but not as rare as sync packets), then they will tend to
be, say, 2-4 bytes in size (still much less than the full up to 64-bit size). If timestamp packets
are emitted somewhat frequently, then they will tend to be 1-2 bytes in size. If timestamp
packets are emitted very frequently, then they will tend to be <1 byte in size. Timestamp
values associated with sync packets would always be the full implemented size.



Chapter 7

Instruction Trace Encoder Output
Packets

The bulk of this section describes the payload of packets output from the Instruction Trace Encoder.
The infrastructure used to transport these packets is outside the scope of this document, and as
such the manner in which packets are encapsulated for transport is not specified. However, the
following information must be provided to the encapsulator:

• The packet type;

• The packet length, in bytes;

• The packet payload.

Two example transport schemes are the Siemens Messaging Infrastructure, and the Arm Trace Bus.
Figure 7.1 shows the encapsulation used for the Siemens infrastructure:

• The header byte contains a 5-bit field specifying the payload length in bytes, a 2-bit field
indicating the "flow" (destination routing indicator), and a bit to indicate whether an optional
16-bit timestamp is present;

• The index field indicates the source of the packet. The number of bits is system dependent,
And the initial value emitted by the trace encoder is zero (it gets adjusted as it propagates
through the infrastructure);

• An optional 2-byte timestamp;

• The packet payload.

Alternatively, for ATB, the source of the packet is indicated by the ATID bus field, and there is
no equivalent of "flow", so an example encapsulation might be:

• A 5-bit field specifying the payload length in bytes

39
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Figure 7.1: Example encapsulated packet format

• A bit to indicate whether an optional 16-bit timestamp is present;

• An optional 2-byte timestamp;

• The packet payload.

It may be desirable for packets to start aligned to an ATB word, in which the ATBYTES bus
field in the last beat of a packet can be used to indicate the number of valid bytes.

The remainder of this section describes the contents of the payload portion which should be inde-
pendent of the infrastructure. In each table, the fields are listed in transmission order: first field
in the table is transmitted first, and multi-bit fields are transmitted LSB first.

This packet payload format is used to output encoded instruction trace. Three different formats
are used according to the needs of the encoding algorithm. The following tables show the format
of the payload - i.e. excluding any encapsulation.

In order to achieve best performance, actual packet lengths may be adjusted using ’sign based
compression’. At the very minimum this should be applied to the address field of format 1 and
2 packets, but ideally will be applied to the whole packet, regardless of format. This technique
eliminates identical bits from the most significant end of the packet, and adjusts the length of
the packet accordingly. A decoder receiving this shortened packet can reconstruct the original
full-length packet by sign-extending from the most significant received bit.

Where the payload length given in the following tables, or after applying sign-based compression,
is not a multiple of whole bytes in length, the payload must be sign-extended to the nearest byte
boundary.

Whilst offering maximum encoding efficiency, variable length packets can present some challenges,
specifically in terms of identifying where the boundaries between packets occur either when packed
packets are written to memory, or when packets are streamed offchip via a communications channel.
Two potential solutions to this are as follows:

• If the maximum packet payload length is 2N-1 (for example, if N is 5, then the maximum
length is 31 bytes), and the minimum packet payload length is 1, then a sequence of at least
2N zero bytes cannot occur within a packet payload, and therefore the first non-zero byte seen
after a sequence of at least 2N zero bytes must be the first byte of a packet. This approach
can be used for alignment in either memory or a data stream;

• An alternative approach suitable for packets written to memory is to divide memory into
blocks of M bytes (e.g. 1kbyte blocks), and write packets to memory such that the first byte
in every block is always the first byte of a packet. This means packets cannot span block
boundaries, and so zero bytes must be used to pad between the end of the last message in a
block and the block boundary.
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7.1 Format 3 packets

Format 3 packets are used for synchronization, traps, reporting context and supporting information.
There are 4 sub-formats.

Throughout this document, the term "synchronization packet" is used. This refers specifically to
format 3, subformat 0 and subformat 1 packets.

7.2 Format 3 subformat 0 - Synchronisation

This packet contains all the information the decoder needs to fully identify an instruction. It is
sent for the first traced instruction (unless that instruction also happens to be the first in a trap
handler), and when resynchronization has been scheduled by expiry of the resynchronisation timer.

Table 7.1: Packet format 3, subformat 0
Field name Bits Description
format 2 11 (sync): synchronisation
subformat 2 00 (start): Start of tracing, or resync
branch 1 Set to 0 if the address points to a branch instruction,

and the branch was taken. Set to 1 if the instruction
is not a branch or if the branch is not taken.

privilege privilege_width_p The privilege level of the reported instruction
time time_width_p or 0 if

notime_p is 1
The time value.

context context_width_p, or
0 if nocontext_p is 1

The instruction context.

address iaddress_width_p -
iaddress_lsb_p

Full instruction address. Address alignment is deter-
mined by iaddress_lsb_p Address must be left shifted
in order to recreate original byte address.

7.2.1 Format 3 branch field

This bit indicates the taken/not taken status in the case where the reported address points to
a branch instruction. Overall efficiency would be slightly improved if this bit was removed, and
the branch status was instead "carried over" and reported in the next te_inst packet. This was
considered, but there are several pathological cases where this approach fails. Consider for example
the situation where the first traced instruction is a branch, and this is then followed immediately
by an exception. This results in format 3 packets being generated on two consecutive instructions.
The second packet does not contain a branch map, so there is no way to report the branch status
of the 1st branch, apart from by inserting a format 1 packet in between. There are two issues with
this:

• It would require the generation of 2 packets on the same cycle, which adds significant addi-
tional complexity to the encoder;
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• It would complicate the algorithm shown in figure 9.1.

7.3 Format 3 subformat 1 - Trap

This packet also contains all the information the decoder needs to fully identify an instruction. It
is sent following an exception or interrupt, and includes the cause, the ’trap value’ (for exceptions),
and the address of the trap handler, or of the exception itself - see section 7.3.1.

If the implicit exception mode is enabled (see section 3.2.3), the trap handler address is omitted if
thaddr is 1.

Table 7.2: Packet format 3, subformat 1
Field name Bits Description
format 2 11 (sync): synchronisation
subformat 2 01 (trap): Exception or interrupt cause and trap han-

dler address.
branch 1 Set to 0 if the address points to a branch instruction,

and the branch was taken. Set to 1 if the instruction
is not a branch or if the branch is not taken.

privilege privilege_width_p The privilege level of the reported instruction.
time time_width_p or 0 if

notime_p is 1
The time value.

context context_width_p, or
0 if nocontext_p is 1

The instruction context

ecause ecause_width_p Exception or interrupt cause.
interrupt 1 Interrupt.
thaddr 1 When set to 1, address points to the trap handler

address. When set to 0, address points to the EPC
for an exception at the target of an updiscon, and is
undefined for other exceptions and interrupts.

address iaddress_width_p -
iaddress_lsb_p

Full instruction address. Address alignment is deter-
mined by iaddress_lsb_p Address must be left shifted
in order to recreate original byte address.

tval iaddress_width_p Value from appropriate utval/stval/vstval/mtval
CSR. Field omitted for interrupts

7.3.1 Format 3 thaddr and address fields

If an exception occurs at the target of an uninferable PC discontinuity, the value of the EPC cannot
be infered from the program binary, and so address contains the EPC and thaddr is set to 0. In
this case, the trap handler address will be reported via a subsequent format 3, subformat 1 packet.

Usually when an exception or interrupt occurs, the cause is reported along with the 1st address of
the trap handler, when that instruction retires. In this case, thaddr is 1. However, if a second
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interrupt or exception occurs immediately, details of this must still be reported, even though the 1st
instruction of the handler hasn’t retired. In this situation, thaddr is 0, and address is undefined
(unless it contains the EPC as outlined in the previous paragraph).

(The reason for not reporting the EPC for all exceptions when thaddr is 0 is that it may be at
either the address of the next instruction or current instruction depending on the exception cause,
which can be inferred by the decoder without adding complexity to the encoder.)

7.3.2 Format 3 tval field

This field reports the "trap value" from the appropriate utval/stval/vstval/mtval CSR, the
meaning of which is dependent on the nature of the exception. It is omitted from the packet for
interrupts.

7.4 Format 3 subformat 2 - Context

This packet contains only the context and/or the timestamp, and is output when the context value
changes and can be reported imprecisely (see Table 4.6).

Table 7.3: Packet format 3, subformat 2
Field name Bits Description
format 2 11 (sync): synchronisation
subformat 2 10 (context): Context change
privilege privilege_width_p The privilege level of the new context.
time time_width_p or 0 if

notime_p is 1
The time value

context context_width_p, or
0 if nocontext_p is 1

The instruction context.

7.5 Format 3 subformat 3 - Support

This packet provides supporting information to aid the decoder. It is issued when

• Trace is enabled or disabled;

• The operating mode changes;

• One or more trace packets cannot be sent (for example, due back-pressure from the packet
transport infrastructure).

The options field is a placeholder that must be replaced by an implementation specific set of
individual bits - one for each of the optional modes supported by the encoder.
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Table 7.4: Packet format 3, subformat 3
Field name Bits Description
format 2 11 (sync): synchronisation
subformat 2 11 (support): Supporting information for the decoder
ienable 1 Indicates if the instruction trace encoder is enabled
encoder_mode N Identifies trace algorithm

Details and number of bits implementation dependent.
Currently Branch trace is the only mode defined, in-
dicated by the value 0.

qual_status 2 Indicates qualification status
00 (no_change): No change to filter qualification
01 (ended_rep): Qualification ended, preceding
te_inst sent explicitly to indicate last qualification
instruction
10 (trace_lost): One or more instruction trace packets
lost.
11 (ended_ntr): Qualification ended, preceding
te_inst would have been sent anyway due to an up-
discon, even if it wasn’t the last qualified instruction)

ioptions N Values of all instruction trace run-time configuration
bits
Number of bits and definitions implementation depen-
dent. Examples might be
- ’sequentially inferred jumps’ Don’t report the targets
of sequentially inferable jumps
- ’implicit return’ Don’t report function return ad-
dresses
- ’implicit exception’ Exclude address from format 3,
sub-format 1 te_inst packets if trap vector can be de-
termined from ecause
- ’branch prediction’ Branch predictor enabled
- ’jump target cache’ Jump target cache enabled
- ’full address’ Always output full addresses (SW de-
bug option)

denable 1 Indicates if the data trace is enabled (if supported)
dloss 1 One of more data trace packets lost (if supported)
doptions M Values of all data trace run-time configuration bits

Number of bits and definitions implementation depen-
dent. Examples might be
- ’no data’ Exclude data (just report addresses)
- ’no addr’ Exclude address (just report data)
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7.5.1 Format 3 subformat 3 qual_status field

When tracing ends, the encoder reports the address of the last traced instruction, and follows
this with a format 3, subformat 3 (supporting information) packet. Two codes are provided for
indicating that tracing has ended: ended_rep and ended_ntr. This relates to exactly the same
ambiguous case described in detail in section 7.6.2, and in principle, the mechanism described in
that section can be used to disambiguate when the last traced instruction is at looplabel. However,
that mechanism relies on knowing when creating the format 1/2 packet, that a format 3 packet
will be generated from the next instruction. This is possible because the encoding algorithm uses
a 3-stage pipe with access to the previous, current and next instructions. However, decoding that
the next instruction is a privilege change or exception is straightforward, but determining whether
the next instruction meets the filtering criteria is much more involved, and this information won’t
typically be available, at least not without adding an additional pipeline stage, which is expensive.
This means a different mechanism is required, and that is provided by having two codes to indicate
that tracing has ended:

• ended_rep indicates that the preceding packet would not have been issued if tracing hadn’t
ended, which means that tracing stopped after executing looplabel in the 1st loop iteration;

• ended_ntr indicates that the preceding packet would have been issued anyway because of
an uninferable PC discontinuity, which means that tracing stopped after executing looplabel
in the 2nd loop iteration;

If the encoder implementation does have early access to the filtering results, and the designer
chooses to use the updiscon bit when the last qualified instruction is also the instruction following
an uninferable PC discontinuity, loss of qualification should always be indicated using ended_rep.

7.6 Format 2 packets

This packet contains only an instruction address, and is used when the address of an instruction
must be reported, and there is no unreported branch information. The address is in differential
format unless full address mode is enabled (see section 3.2.2).

7.6.1 Format 2 notify field

This bit is encoded so that most of the time it will take the same value as the MSB of the address
field, and will therefore compress away, having no impact on the encoding efficiency. It is required
in order to cover the case where an address is reported as a result of a notification request, signalled
by setting the trigger[2] input to 1.

7.6.2 Format 2 notify and updiscon fields

These bits are encoded so that most of the time they will compress away, having no impact on
efficiency, by taking on the same value as the preceding bit in the packet (notify is normally the
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Table 7.5: Packet format 2
Field name Bits Description
format 2 10 (addr-only): differential address and no branch in-

formation
address iaddress_width_p -

iaddress_lsb_p
Differential instruction address.

notify 1 If the value of this bit is different from the MSB of
address, it indicates that this packet is reporting an
instruction that is not the target of an uninferable
discontinuity because a notification was requested via
trigger[2] (see section 4.2.4).

updiscon 1 If the value of this bit is different from notify, it in-
dicates that this packet is reporting the instruction
following an uninferable discontinuity and is also the
instruction before an exception, privilege change or
resync (i.e. it will be followed immediately by a for-
mat 3 te_inst).

irreport 1 If the value of this bit is different from updiscon, it
indicates that this packet is reporting an instruction
that is either:
following a return because its address differs from
the predicted return address at the top of the im-
plicit_return return address stack, or
the last retired before an exception, interrupt, privi-
lege change or resync because it is necessary to report
the current address stack depth or nested call count.

irdepth return_stack_size_p
+ (re-
turn_stack_size_p
> 0 ? 1 : 0) +
call_counter_size_p

If the value of irreport is different from updiscon,
this field indicates the number of entries on the return
address stack (i.e. the entry number of the return that
failed) or nested call count. If irreport is the same
value as updiscon, all bits in this field will also be
the same value as updiscon.

same value as the MSB of the address field, and updiscon is normally the same value as notify).
They are required in order to cover a pathological case where otherwise the decoding software
would not be able to reconstruct the program execution unambiguously. Consider the following
code fragment:

looplabel - 4: opcode A
looplabel : opcode B
looplabel + 4: opcode C
:
looplabel + N: JALR # Jump to looplabel

This is a loop with an indirect jump back to the next iteration. This is an uninferable discontinuity,
and will be reported via a format 1 or 2 packet. Note however that the initial entry into the loop is
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fall-through from the instruction at looplabel - 4, and will not be reported explicitly. This means
that when reconstructing the execution path of the program, the looplabel address is encountered
twice. On first glance, it appears that the decoder can determine when it reaches the loop label for
the 1st time that this is not the end of execution, because the preceding instruction was not one that
can cause an uninferable discontinuity. It can therefore continue reconstructing the execution path
until it reaches the JALR, from where it can deduce that opcode B at looplabel is the final retired
instruction. However, there are circumstances where this approach does not work. For example,
consider the case where there is an exception at looplabel + 4. In this case, the decoder cannot tell
whether this occurred during the 1st or 2nd loop iterations, without additional information from
the encoder. This is the purpose of the updiscon field. In more detail:

There are four scenarios to consider:

1. Code executes through to the end of the 1st loop iteration, and the encoder reports looplabel
using format 1/2 following the JALR, then carries on executing the 2nd pass of the loop. In
this case updiscon == notify. The next packet will be a format 1/2;

2. Code executes through to the end of the 1st loop iteration and jumps back to looplabel, but
there is then an exception, privilege change or resync in the second iteration at looplabel +
4. In this case, the encoder reports looplabel using format 1/2 following the JALR, with
updiscon == !notify, and the next packet is a format 3;

3. An exception occurs immediately after the 1st execution of looplabel. In this case, the encoder
reports looplabel using format 0/1/2 with updiscon == notify, and the next packet is a
format 3;

4. The hart requests the encoder to notify retirement of the instruction at looplabel. In this
case, the encoder reports the 1st execution of looplabel with notify == !address[MSB],
and subsequent executions with notify == address[MSB] (because they would have been
reported anyway as a result of the JALR).

Looking at this from the perspective of the decoder, the decoder receives a format 1/2 reporting
the address of the 1st instruction in the loop (looplabel). It follows the execution path from the last
reported address, until it reaches looplabel. Because looplabel is not preceded by an uninferable
discontinuity, it must take the value of notify and updiscon into consideration, and may need to
wait for the next packet in order to determine whether it has reached the final retired instruction:

• If updiscon == !notify, this indicates case 2. The decoder must continue until it encounters
looplabel a 2nd time;

• If updiscon == notify, the decoder cannot yet distinguish cases 1 and 3, and must wait for
the next packet.

– If the next packet is a format 3, this is case 3. The decoder has already reached the
correct instruction;

– If the next packet is a format 1/2, this is case 1. The decoder must continue until it
encounters looplabel a 2nd time.
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• If notify == !address[MSB], this indicates case 4, 1st iteration. The decoder has reached
the correct instruction.

This example uses an exception at looplabel + 4, but anything that could cause a format 3 for
looplabel + 4 would result in the same behavior: a privilege change, or the expiry of the resync
timer. It could also occur if looplabel was the last traced instruction (because tracing was disabled
for some reason). See section 7.5.1 for further discussion of this point.

Note: Correct decoder behavior could have been achieved by implementing the notify bit only,
setting it to the inverse of address[MSB] whenever an address is reported and it is not the
instruction following an uninferable discontinuity. However, this would have been much less efficient,
as this would have required notify to be different from address[MSB] the majority of the time
when outputting a format 1/2 before an exception, interrupt or resync (as the probability of this
instruction being the target of an uninferable jump is low). Using 2 separate bits results in superior
compression.

7.6.3 Format 2 irreport and irdepth

These bits are encoded so that most of the time they will take the same value as the updis-
con field, and will therefore compress away, having no impact on the encoding efficiency. If
implicit_return mode is enabled, the encoder keeps track of the number of traced nested calls,
either as a simple count (call_counter_size_p non-zero) or a stack of predicted return addresses
(return_stack_size_p non-zero).

Where a stack of predicted return addresses is implemented, the predicted return addresses are
compared with the actual return addresses, and a te_inst packet will be generated with irreport
set to the opposite value to updiscon if a misprediction occurs.

In some cases it is also necessary to report the current stack depth or call count if the packet is
reporting the last instruction before an exception, interrupt, privilege change or resync. There are
two cases of concern:

• If the reported address is the instruction following a return, and it is not mis-predicted, the
encoder must report the current stack depth or call count if it is non-zero. Without this, the
decoder would attempt to follow the execution path until it encountered the reported address
from the outermost nested call;

• If the reported address is not the instruction following a return, the encoder must report the
current stack depth or call count unless:

– There have been no returns since the last call (in which case the decoder will correctly
stop in the innermost call), or

– There has been at least one branch since the last return (in which case the decoder will
correctly stop in the call where there are no unprocessed branches).

Without this, the decoder would follow the execution path until it encountered the reported
address, and in most cases this would be the correct point. However, this cannot be guaranteed
for recursive functions, as the reported address will occur multiple times in the execution path.
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7.7 Format 1 packets

This packet includes branch information, and is used when either the branch information must be
reported (for example because the branch map is full), or when the address of an instruction must
be reported, and there has been at least one branch since the previous packet. If included, the
address is in differential format unless full address mode is enabled (see section 3.2.2).

7.7.1 Format 1 updiscon field

See section 7.6.2.

7.7.2 Format 1 branch_map field

When the branch map becomes full it must be reported, but in most cases there is no need to
report an address. This is indicated by setting branches to 0. The exception to this is when the
instruction immediately prior to the final branch causes an uninferable discontinuity, in which case
branches is set to 31.

The choice of sizes (1, 3, 7, 15, 31) is designed to minimize efficiency loss. On average there will
be some ’wasted’ bits because the number of branches to report is less than the selected size of
the branch_map field. Using a tapered set of sizes means that the number of wasted bits will
on average be less for shorter packets. If the number of branches between updiscons is randomly
distributed then the probability of generating packets with large branch counts will be lower, in
which case increased waste for longer packets will have less overall impact. Furthermore, the rate
at which packets are generated can be higher for lower branch counts, and so reducing waste for
this case will improve overall bandwidth at times where it is most important.

7.7.3 Format 1 irreport and irdepth fields

See section 7.6.3.
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Table 7.6: Packet format 1 - address, branch map
Field name Bits Description
format 2 01 (diff-delta): includes branch information and may

include differential address
branches 5 Number of valid bits branch_map. The number of

bits of branch_map is determined as follows:
0: (cannot occur for this format)
1: 1 bit
2-3: 3 bits
4-7: 7 bits
8-15: 15 bits
16-31: 31 bits
For example if branches = 12, branch_map is 15
bits long, and the 12 LSBs are valid.

branch_map Determined by
branches field.

An array of bits indicating whether branches are taken
or not.
Bit 0 represents the oldest branch instruction exe-
cuted. For each bit:
0: branch taken
1: branch not taken

address iaddress_width_p -
iaddress_lsb_p

Differential instruction address.

notify 1 If the value of this bit is different from the MSB of
address, it indicates that this packet is reporting an
instruction that is not the target of an uninferable
discontinuity because a notification was requested via
trigger[2] (see section 4.2.4).

updiscon 1 If the value of this bit is different from the MSB of
notify, it indicates that this packet is reporting the
instruction following an uninferable discontinuity and
is also the instruction before an exception, privilege
change or resync (i.e. it will be followed immediately
by a format 3 te_inst).

irreport 1 If the value of this bit is different from updiscon, it
indicates that this packet is reporting an instruction
that is either:
following a return because its address differs from
the predicted return address at the top of the im-
plicit_return return address stack, or
the last retired before an exception, interrupt, privi-
lege change or resync because it is necessary to report
the current address stack depth or nested call count.

irdepth return_stack_size_p
+ (re-
turn_stack_size_p
> 0 ? 1 : 0) +
call_counter_size_p

If the value of irreport is different from updiscon,
this field indicates the number of entries on the return
address stack (i.e. the entry number of the return that
failed) or nested call count. If irreport is the same
value as updiscon, all bits in this field will also be
the same value as updiscon.
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Table 7.7: Packet format 1 - no address, branch map
Field name Bits Description
format 2 01 (diff-delta): includes branch information and may

include differential address
branches 5 Number of valid bits in branch_map. The length of

branch_map is determined as follows:
0: 31 bits, no address in packet
1-31: (cannot occur for this format)

branch_map 31 An array of bits indicating whether branches are taken
or not.
Bit 0 represents the oldest branch instruction exe-
cuted. For each bit:
0: branch taken
1: branch not taken

7.8 Format 0 packets

This format is intended for optional efficiency extensions. Currently two extensions are defined, for
reporting counts of correctly predicted branches, and for reporting the jump target cache index.

If branch prediction is supported and is enabled, then there is a choice of whether to output a full
branch map (via format 1), or a count of correctly predicted branches. The count format is used if
the number of correctly predicted branches is at least 31. If there are 31 unreported branches (i.e.
the branch map is full), but not all of them were predicted correctly, then the branch map will be
output. A branch count will be output under the following conditions:

• A branch is mis-predicted. The count value will be the number of correctly predicted branches,
minus 31. No address information is provided - it is implicitly that of the branch which failed
prediction;

• An updiscon, interrupt or exception requires the encoder to output an address. In this case
the encoder will output the branch count (number of correctly predicted branches, minus 31);

• The branch count reaches its maximum value. Strictly speaking an address isn’t required
for this case, but is included to avoid having to distinguish the packet format from the case
above. It will occur so rarely that the bandwidth impact can be ignored.

If a jump target cache is supported and enabled, and the address to report following an updiscon
is in the cache then the encoder can output the cache index index using format 0, subformat 1.
However, the encoder may still choose to output the differential address using format 1 or 2 if the
resulting packet is shorter. This may occur if the differential address is zero, or very small.

7.8.1 Format 0 subformat field

The width of this field depends on the number of optional formats supported. Currently, two
optional formats are defined (correctly predicted branches and jump target cache). The width
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Table 7.8: Packet format 0, subformat 0 - no address, branch count
Field name Bits Description
format 2 00 (opt-ext): formats for optional efficiency extensions
subformat See section 7.8.1 0 (correctly predicted branches)
branch_count 32 Count of the number of correctly predicted branches,

minus 31.
branch_fmt 2 00 (no-addr): Packet does not contain an address,

and the branch following the last correct prediction
failed.
01-11: (cannot occur for this format)

is specified by the f0s_width discovery field (see section 10.1). If multiple optional formats are
supported, the field width must be non-zero. However, if only one optional format is supported,
the field can be omitted, and the value of the field inferred from the options field in the support
packet (see section 7.5. This provision allows additional formats to be added in future without
reducing the efficiency of the existing formats.

7.8.2 Format 0 branch_fmt field

This is encoded so that when no address is required it will be zero, allowing the upper bits of the
branch_count field to be compressed away.

When a branch count is reported without an address it is because a branch has failed the prediction.
However, when an address is reported along with a branch count, it will be because the packet was
initiated by an uninferable discontinuity, an exception, or because a branch has been encountered
when branch_count is 0xffff_ffff. For the latter case, the reported address will always be for a
branch, and in the former cases it may be. If it is a branch, it is necessary to be explicit about
whether or not the prediction was met or not. If it is met, then the reported address is that of the
last correctly predicted branch.

7.8.3 Format 0 irreport and irdepth fields

These bits are encoded so that most of the time they will take the same value as the immediately
preceding bit (updiscon, branch_map[MSB] or branches[MSB] depending on the specific
packet format). Purpose and behavior is as described in section 7.6.3.

For the jump target cache (subformat 1), they are included to allow return addresses that fail
the implicit return prediction but which reside in the jump target cache to be reported using this
format. An implementation could omit these if all implicit return failures are reported using format
1.
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Table 7.9: Packet format 0, subformat 0 - address, branch count
Field name Bits Description
format 2 00 (opt-ext): formats for optional efficiency extensions
subformat See section 7.8.1 0 (correctly predicted branches)
branch_count 32 Count of the number of correctly predicted branches,

minus 31.
branch_fmt 2 10 (addr): Packet contains an address. If this points

to a branch instruction, then the branch was predicted
correctly.
11 (addr-fail): Packet contains an address that points
to a branch which failed the prediction.
00,01: (cannot occur for this format)

address iaddress_width_p -
iaddress_lsb_p

Differential instruction address.

notify 1 If the value of this bit is different from the MSB of
address, it indicates that this packet is reporting an
instruction that is not the target of an uninferable
discontinuity because a notification was requested via
trigger[2] (see section 4.2.4).

updiscon 1 If the value of this bit is different from notify, it in-
dicates that this packet is reporting the instruction
following an uninferable discontinuity and is also the
instruction before an exception, privilege change or
resync (i.e. it will be followed immediately by a for-
mat 3 te_inst).

irreport 1 If the value of this bit is different from updiscon, it
indicates that this packet is reporting an instruction
that is either:
following a return because its address differs from
the predicted return address at the top of the im-
plicit_return return address stack, or
the last retired before an exception, interrupt, privi-
lege change or resync because it is necessary to report
the current address stack depth or nested call count.

irdepth return_stack_size_p
+ (re-
turn_stack_size_p
> 0 ? 1 : 0) +
call_counter_size_p

If the value of irreport is different from updiscon,
this field indicates the number of entries on the return
address stack (i.e. the entry number of the return that
failed) or nested call count. If irreport is the same
value as updiscon, all bits in this field will also be
the same value as updiscon.
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Table 7.10: Packet format 0, subformat 1 - jump target index, branch map
Field name Bits Description
format 2 00 (opt-ext): formats for optional efficiency extensions
subformat See section 7.8.1 1 (jump target cache)
index cache_size_p Jump target cache index of entry containing target

address.
branches 5 Number of valid bits in branch_map. The length of

branch_map is determined as follows:
0: (cannot occur for this format)
1: 1 bit
2-3: 3 bits
4-7: 7 bits
8-15: 15 bits
16-31: 31 bits
For example if branches = 12, branch_map is 15
bits long, and the 12 LSBs are valid.

branch_map Determined by
branches field.

An array of bits indicating whether branches are taken
or not.
Bit 0 represents the oldest branch instruction exe-
cuted. For each bit:
0: branch taken
1: branch not taken

irreport 1 If the value of this bit is different from
branch_map[MSB], it indicates that this packet is
reporting an instruction that is either:
following a return because its address differs from
the predicted return address at the top of the im-
plicit_return return address stack, or
the last retired before an exception, interrupt, privi-
lege change or resync because it is necessary to report
the current address stack depth or nested call count.

irdepth return_stack_size_p
+ (re-
turn_stack_size_p
> 0 ? 1 : 0) +
call_counter_size_p

If the value of irreport is different from
branch_map[MSB], this field indicates the
number of entries on the return address stack (i.e.
the entry number of the return that failed) or
nested call count. If irreport is the same value as
branch_map[MSB], all bits in this field will also
be the same value as branch_map[MSB].
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Table 7.11: Packet format 0, subformat 1 - jump target index, no branch map
Field name Bits Description
format 2 00 (opt-ext): formats for optional efficiency ex-

tensions
subformat See section 7.8.1 1 (jump target cache)
index cache_size_p Jump target cache index of entry containing tar-

get address.
branches 5 Number of valid bits in branch_map. The

length of branch_map is determined as fol-
lows:
0: no branch_map in packet
1-31: (cannot occur for this format)

irreport 1 If the value of this bit is different from
branches[MSB], it indicates that this packet
is reporting an instruction that is either:
following a return because its address differs
from the predicted return address at the top of
the implicit_return return address stack, or
the last retired before an exception, interrupt,
privilege change or resync because it is neces-
sary to report the current address stack depth
or nested call count.

irdepth return_stack_size_p
+ (re-
turn_stack_size_p
> 0 ? 1 : 0) +
call_counter_size_p

If the value of irreport is different from
branches[MSB], this field indicates the num-
ber of entries on the return address stack (i.e.
the entry number of the return that failed) or
nested call count. If irreport is the same value
as branches[MSB], all bits in this field will also
be the same value as branches[MSB].
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Chapter 8

Data Trace Encoder Output Packets

Data trace packets must be differentiated from instruction trace packets, and the means by which
this is accomplished is dependent on the trace transport infrastructure. Several possibilities exist:
One option is for instruction and data trace to be issued using different IDs (for example, if using
ATB transport, different ATID values). Alternatively, an additional field as part of the packet
encapsulation can be used (Siemens uses a 2-bit msg_type field to differentiate different trace
types from the same source).

By default, all data trace packets include both address and data. However, provision is made
for run-time configuration options to exclude either the address or the data, in order to minimize
trace bandwidth. For example, if filtering has been configured to only trace from a specific data
access address there is no need to report the address in the trace. Alternatively, the user may
want to know which locations are accessed but not care about the data value. Information about
whether address or data are omitted is not encoded in the packets themselves as it does not change
dynamically, and to do so would reduce encoding efficiency. The run-time configuration should be
reported in the Format 3, subformat 3 support packet (see section 7.5). The following sections
include examples for all three cases.

As outlined in section 4.3, two different signaling protocols between the RISC-V hart and the
encoder are supported: unified and split. Accordingly, both unified and split trace packets are
defined.

Note: in the following tables, "clog2" is an abbreviation for "ceiling of log2".

8.1 Load and Store

8.1.1 format field

Types of data trace packets are differentiated by the format field. This field is 2 bits wide if only
unified loads and stores are supported, or 3 bits otherwise.

Unified loads and split load request phase share the same code because the encoder will support
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Table 8.1: Packet format for Unified load or store, with address and data
Field name Bits Description
format 2 or 3 Transaction type

000: Unified load or split load address, aligned
001: Unified load or split load address, unaligned
010: Store, aligned address
011: Store, unaligned address
(other codes select other packet formats)

size max(1, clog2(clog2(
data_width_p/8 + 1))

Transfer size is 2size bytes

diff 2 00: Full address and data (sync)
01: Differential address, XOR-compressed data
10: Differential address, full data
11: Differentail address, differential data

data_len size Number of bytes of data is data_len + 1
data 8 * (data_len + 1) Data
address daddress_width_p Byte address if format is unaligned, otherwise shift left

by size to recover byte address

Table 8.2: Packet format for Unified load or store, with address only
Field name Bits Description
format 2 or 3 Transaction type

000: Unified load or split load address, aligned
001: Unified load or split load address, unaligned
010: Store, aligned address
011: Store, unaligned address
(other codes select other packet formats)

size max(1, clog2(clog2(
data_width_p/8 + 1))

Transfer size is 2size bytes

diff 1 0: Full address (sync)
1: Differential address

address daddress_width_p Byte address if format is unaligned, otherwise shift left
by size to recover byte address
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Table 8.3: Packet format for Unified load or store, with data only
Field name Bits Description
format 2 or 3 Transaction type

000: Unified load or split load address, aligned
001: Unified load or split load address, unaligned
010: Store, aligned address
011: Store, unaligned address
(other codes select other packet formats)

size max(1, clog2(clog2(
data_width_p/8 + 1))

Transfer size is 2size bytes

diff 1 or 2 00: Full data (sync)
01: Compressed data (XOR if 2 bits)
10: reserved
11: Differential data

data data_width_p Data

Table 8.4: Packet format for Split load - Address only
Field name Bits Description
format 3 Transaction type

000: Unified load or split load address, aligned
001: Unified load or split load address, unaligned
(other codes select other packet formats)

size max(1, clog2(clog2(
data_width_p/8 + 1))

Transfer size is 2size bytes

index index_width_p Transfer index
diff 1 0: Full address (sync)

1: Differential address
address daddress_width_p Byte address if format is unaligned, otherwise shift left

by size to recover byte address

Table 8.5: Packet format for Split load - Data only
Field name Bits Description
format 3 Transaction type

100: split load data
(other codes select other packet formats)

size max(1, clog2(clog2(
data_width_p/8 + 1))

Transfer size is 2size bytes

index index_width_p Transfer index
resp 2 00: Error (no data)

01: XOR-compressed data
10: Full data
11: Differential data

data data_width_p Data
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one or the other, indicated by a discoverable parameter.

Data accesses aligned to their size (e.g. 32-bit loads aligned to 32-bit word boundaries) are expected
to be commonplace, and in such cases, encoding efficiency can be improved by not reporting the
redundant LSBs of the address.

8.1.2 size field

The width of this field is 2 bits if max size is 64-bits (data_width_p < 128), 3 bits if wider.

8.1.3 diff field

Unlike instruction trace, compression options for data trace are somewhat limited. Following a
synchronization instruction trace packet, the first data trace packet for a given access size must
include the full (unencoded) data access address. Thereafter, the address may be reported differ-
entially (i.e. address of this data access, minus the address of the previous data access of the same
size).

Similarly, following a synchronization instruction trace packet, the first data trace packet for a given
access size must include the full (unencoded) data value. Beyond this, data may be encoded or
unencoded depending on whichever results in the most efficient represenation. Implementors may
chose to offer one of XOR or differential compression, or both. XOR compression will be simpler
to implement, and avoids the need for performing subtraction of large values.

If only one data compression type is offered, the diff field can be 1 bit wide rather than 2 for table
8.3.

8.1.4 data_len field

However the data is compressed, upper bytes that are all the same value do not need to be included
in the packet; the decoder can recreate the full-width value by sign extending from the most
significant received bit. In cases where data is not the final field in the packet, the width of data
is indicated by this field.

8.2 Atomic

8.2.1 size field

Strictly, size could be just one bit as atomics are currently either 32 or 64 bits. Defining as per
regular loads and stores provisions for future extensions (proprietary or otherwise) that support
smaller atomics.
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Table 8.6: Packet format for Unified atomic with address and data
Field name Bits Description
format 3 Transaction type

110: Unified atomic or split atomic address
(other codes other packet formats)

subtype 3 Atomic sub-type
000: Swap
001: ADD
010: AND
011: OR
100: XOR
101: MAX
110: MIN
111: reserved

size max(1, clog2(clog2(
data_width_p/8 + 1))

Transfer size is 2size bytes

diff 2 00: Full address and data (sync)
01: Differential address, XOR-compressed data
10: Differential address, full data
11: Differential address, differential data

op_len size Number of bytes of operand is op_len + 1
operand 8 * (op_len + 1) Operand. Value from rs2 before operator applied
data_len size Number of bytes of data is data_len + 1
data 8 * (data_len + 1) Data
address daddress_width_p Address, aligned and encoded as per size

Table 8.7: Packet format for Unified atomic with address only
Field name Bits Description
format 3 Transaction type

110: Unified atomic or split atomic address
(other codes other packet formats)

subtype 3 Atomic sub-type
000: Swap
001: ADD
010: AND
011: OR
100: XOR
101: MAX
110: MIN
111: conditional store failure

size max(1, clog2(clog2(
data_width_p/8 + 1))

Transfer size is 2size bytes

diff 1 0: Full address
1: Differential address

address daddress_width_p Address, aligned and encoded as per size
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Table 8.8: Packet format for Unified atomic with data only
Field name Bits Description
format 3 Transaction type

110: Unified atomic or split atomic address
(other codes other packet formats)

subtype 3 Atomic sub-type
000: Swap
001: ADD
010: AND
011: OR
100: XOR
101: MAX
110: MIN
111: reserved

size max(1, clog2(clog2(
data_width_p/8 + 1))

Transfer size is 2size bytes

diff 1 or 2 00: Full data (sync)
01: Compressed data (XOR if 2 bits)
10: reserved
11: Differential data

op_len size Number of bytes of operand is op_len + 1
operand 8 * (op_len + 1) Operand. Value from rs2 before operator applied
data data_width_p Data

8.2.2 diff field

See section 8.1.3.

8.2.3 operand field

The operand value for the atomic operation. Uncompressed, although upper bytes that are all the
same value do not need to be included in the packet; the decoder can recreate the full-width value
by sign extending from the most significant received bit; see section 8.2.4.

8.2.4 data_len and op_len fields

Width of data and operand fields respectively. See section 8.1.4.
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Table 8.9: Packet format for Split atomic with operand only
Field name Bits Description
format 3 Transaction type

110: Unified atomic or split atomic address
(other codes other packet formats)

subtype 3 Atomic sub-type
000: Swap
001: ADD
010: AND
011: OR
100: XOR
101: MAX
110: MIN
111: reserved

size max(1, clog2(clog2(
data_width_p/8 + 1))

Transfer size is 2size bytes bytes

index index_length_p Transfer index
diff 1 or 2 00: Full address and data (sync)

01: Differential address, XOR-compressed data
10: Differential address, full data
11: Differential address, differential data

op_len size Number of bytes of operand is op_len + 1
operand 8 * (op_len + 1) Operand. Value from rs2 before operator applied
address daddress_width_p Address, aligned and encoded as per size

Table 8.10: Packet format for Split atomic load data only
Field name Bits Description
format 3 Transaction type

111: Split atomic data
other codes other packet formats

index index_length_p Transfer index
resp 2 00: Error (no data)

01: XOR-compressed data
10: full data
11: differential data

data_len size Number of bytes of operand is data_len + 1. Not
included if resp indicates an error (sign-extend resp
MSB)

data 8 * (data_len + 1) Data. Not included if resp indicates an error (sign-
extend resp MSB)
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8.3 CSR

Table 8.11: Packet format for Unified CSR, with address, data and operand
Field name Bits Description
format 3 Transaction type

101: CSR
(other codes other packet formats)

subtype 2 CSR sub-type
00: RW
01: RS
10: RC
11: reserved

diff 1 or 2 00: Full data (sync)
01: Compressed data (XOR if 2 bits)
10: reserved
11: Differential data

data_len 2 or 3 Number of bytes of data is data_len + 1
data 8 * (data_len + 1) Data
addr_msbs 6 Address[11:6]
op_len 2 or 3 Number of bytes of operand is op_len + 1
operand 8 * (op_len + 1) Operand. Value from rs1 before operator applied
addr_lsbs 6 Address[5:0]

8.3.1 diff field

See section 8.1.3.

8.3.2 operand field

See section 8.2.3.

8.3.3 data_len and op_len fields

2 bits wide if hart has 32-bit CSRs, 3 bits if 64-bit. Width of data and operand fields respectively.
See section 8.1.4.

8.3.4 addr fields

The address is split into two parts, with the 6 LSBs output last as these are more likely to compress
away.
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Table 8.12: Packet format for Unified CSR, with address and read-only data (as determined by
addr[11:10] = 11)

Field name Bits Description
format 3 Transaction type

101: CSR
other codes other packet formats

subtype 2 CSR sub-type
00: RW
01: RS
10: RC
11: reserved

diff 1 or 2 00: Full data (sync)
01: Compressed data (XOR if 2 bits)
10: reserved
11: Differential data

data_len 2 or 3 Number of bytes of data is data_len + 1
data 8 * (data_len + 1) Data
addr_msbs 6 Address[11:6]
addr_lsbs 6 Address[5:0]

Table 8.13: Packet format for Unified CSR, with address only
Field name Bits Description
format 3 Transaction type

101: CSR
other codes other packet formats

subtype 3 CSR sub-type
00: RW
01: RS
10: RC
11: reserved

diff 0 or 1 0: Full address
1: Differential address

addr_msbs 6 Address[11:6]
addr_lsbs 6 Address[5:0]
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Chapter 9

Reference Compressed Branch Trace
Algorithm

The contents of this chapter are informative only.

A reference algorithm for compressed branch trace is given in figure 9.1. In the diagram, the
following terms are used:

• te_inst. The name of the packet type emitted by the encoder (see Chapter 7);

• inst. Abbreviation for ’instruction’;

• exception. Exception or interrupt signalled;

• updiscon. Uninferable PC discontinuity. This identifies an instruction that causes the program
counter to be changed by an amount that cannot be predicted from the source code alone
(itype values 8, 10, 12 or 14);

• Qualified? An instruction that meets the filtering criteria is qualified, and will be traced;

• Branch? Is the instruction a branch or not (itype values 4 or 5);

• branch map. A vector where each bit represents the outcome of a branch. A 0 indicates the
branch was taken, a 1 indicates that it was not;

• ppccd. Privilege has changed, or context has changed and needs to be reported precisely or
treated as an uninferable PC discontinuity (see Table 4.6);

• ppccd_br. As above, but branch map not empty;

• er_n. Instruction retirement and exception signalled on the same cycle, or Trace notify
trigger (see Table 4.9);

• exc_only. Exception or interrupt signalled without simultaneous retirement;

• cci. context change that can be reported imprecisely (see Table 4.6);
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• rpt_br. Report branches due to full branch map or misprediction;

• branches. The number of branches encountered but not yet reported to the decoder;

• pbc. Correctly predicted branches count (always zero if branch predictor disabled or not
present);

• Reported? "Exception previous" reported with thaddr = 0 on the cycle it occured because
it was preceded by an updiscon or immediately followed by another exception;

• resync count. A counter used to keep track of when it is necessary to send a synchronization
packet (see Section 9.2);

• max_resync. The resync counter value that schedules a synchronization packet (see Sec-
tion 9.2);

• resync_br. The resync counter has reached the maximum value and there are entries in the
branch map that have not yet been output (see Section 9.2).

Figure 9.1 shows instruction by instruction behavior, as would be seen in a single-retirement system
only. Whilst the core to encoder interface allows the RISC-V hart to provide information on multiple
retiring instructions simultaneously, the resultant packet sequence generated by the encoder must
be the same as if retiring one instruction at a time.

A 3-stage pipeline within the encoder is assumed, such that the encoder has visibility of the current,
previous and next instructions. All packets are generated using information relating to the current
instruction. The orange diamonds indicate decisions based on the previous instruction, the green
diamond indicates a decision based on the next instruction, and all other diamonds are based on
the current instruction.

Additionally, the encoder can generate one further packet type, not shown on the diagram for
clarity. The support packet (format 3, subformat 3 - see section 7.5) is sent when:

• The encoder is enabled or disabled, or its configuration is changed, to inform the decoder of
the operating mode of the encoder;

• After the final qualified instruction has been traced, to inform the decoder that tracing has
stopped;

• If trace packets are lost (for example if the buffer into which packets are being written fills
up. In this situation, the 1st packet loaded into the buffer when space next becomes available
must be a support packet. Following this, tracing will resume with a sync packet.

Note: if the halted or reset sideband signals are asserted (see Table 4.7) the encoder will behave
as if it has received an unqualified instruction (output te_inst reporting the address of the previous
instruction, followed by te_support);
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Figure 9.1: Instruction delta trace algorithm
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9.1 Format selection

In all cases but two, the packet format is determined only by a ’yes’ outcome from the associated
decision.

When reporting branch information on its own (without an address), the choice between format
1 and format 0, subformat 0 depends on the number of correctly predicted branches (this will be
0 if the predictor is not supported, or is disabled). No packets are generated until there are at
least 31 branches to report. Format 1 is used if the outcome of at least one of those 31 branches
was not predicted correctly. If all were predicted correctly, nothing is output at this time, and
the encoder continues to count correctly predicted branch outcomes. As soon as one of the branch
outcomes is not correctly predicted, the encoder will output a format 0, subformat 0 packet. See
also section 7.8.

The choice between formats for the "format 0/1/2" case in the middle of the diagram also needs
further explanation.

• If the number of correctly predicted branches is 31 or more, then format 0, subformat 0 is
always used;

• Else, if the jump target cache is supported and enabled, and the address being reported is
in the cache, then normally format 0, subformat 1 will be used, reporting the cache index
associated with the address. This will include branch information if there are any branches
to report. However, the encoder may chose to output the equivalent format 1 or 2 packet
(containing the differential address, with or without branch information) if that will result in
a shorter packet (see section 7.8);

• Else, if there are branches to report, format 1 is used, otherwise format 2.

Packet formats 0, 1 and 2 are organized so that the address is usually the final field. Minimizing
the number of bits required to represent the address reduces the total packet size and significantly
improves efficiency. See Chapter 7.

9.2 Resynchronisation

Per Section 3.1.5, a format 3 synchronisation packet must be output after "a prolonged period of
time". The exact mechanism for determining this is not specified, but options might be to count
the number of te_inst packets emitted, or the number of clock cycles elapsed, since the previous
synchronization message was sent.

When the resync is required, the primary objective is to output a format 3 packet, so that the
decoder can start tracing from that point without needing any of the history. However, if the
decoder is already synced, then it is also required that it can continue to follow the execution path
up to and through the format 3 packet seamlessly. As such, before outputting a format 3 packet, it
is necessary to output a format 1 packet for the preceding instruction if there are any unreported
branches (because format 3 does not contain a branch map). The format 3 will be sent if the resync
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timer has been exceeded. On the cycle before this (when the resync timer value has been exactly
reached), a format 1 will be generated if the branch map is not empty.

9.3 Multiple retirement considerations

As noted earlier in this section, for a single-retirement system the reference algorithm is applied to
each retired instruction. When instructions are retired in blocks, only the first and last instruction
in a block need be considered, as all those in between are "uninteresting", and will have no effect
on the encoder’s state (their route through figure 9.1 does not pass through any of the rectangular
boxes).

In most cases, either the first or last instruction of a block (but not both) is interesting, meaning
that the encoder does not need to generate more than one packet from a block. However, there
are a few cases where this is not true, and it is possible that the encoder will need to generate two
packets from the same block.

For example, the first instruction in a block must generate a packet if it is the first traced instruction.
However, if the block also indicates an exception or interrupt (itype= 1 or 2), then the last
instruction in the block must also generate a packet.

As generating multiple packets per cycle would significatly complicate the encoder, and as situa-
tions such as this will only occur infrequently, some elastic buffering in the encoder is the preferred
approach. This will allow subsequent blocks to be queued whilst the encoder generates two succes-
sive packets from a block. The encoder can drain the elastic buffer any time there is a cycle when
the hart doesn’t report anything, or if there is a block with itype = 0 (which is uninteresting to
the encoder).

There are pathological cases where consecutive blocks could require packets to be generated from
both first and last instructions, but elastic buffering is only required if the blocks are also input
on consecutive cycles. In practice there are very few cases where this can occur. The worst so far
identified case is a variation on the example above, where the exception is an ecall, and that in
turn encounters some other form of exception or interrupt in the first few instructions of the trap
handler:

• Block 1: itype = 1 (ecall), iretires > 1. Generate packet from first instruction (first traced),
and last instruction (last before ecall);

• Block 2: itype = 1 or 2 (some other exception or interrupt), iretires > 0. Generate packet
from first instruction (ecall trap handler), and last instruction (last before other exception or
interrupt);

• Block 3: Generate packet from first instruction (other exception or interrupt trap handler)

Because the ecall is known to the hart’s fetch unit and can be predicted, it may be possible for block
2 to occur the cycle after block 1. However, it is reasonable to assume that the other exception or
interrupt will not be predictable, and as a result there will be several cycles between blocks 2 and
3, which will allow the encoder to ’catch up’. It is recommended that encoders implement sufficient
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elastic buffering to handle this case, and if for some reason the elastic buffer overflows, it should
issue a support packet indicating trace lost.



Chapter 10

Parameters and Discovery

This document defines a number of parameters for describing aspects of the encoder such as the
widths of buses, the presence or absence of optional features and the size of resources, as listed in
Tables 10.1 and 10.2.

Depending on the implementation, some parameters may be inherently fixed whilst others may be
passed in to the design by some means.
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Table 10.1: Parameters to the encoder - instruction trace
Parameter name Range Description
arch_p The architecture specification version with which the en-

coder is compliant (0 for initial version).
blocks_p Number of times iretire, itype etc. are replicated
bpred_size_p Number of entries in the branch predictor is 2bpred_size_p.

Minimum number of entries is 2, so a value of 0 indicates
that there is no branch predictor implemented.

cache_size_p Number of entries in the jump target cache is 2cache_size_p.
Minimum number of entries is 2, so a value of 0 indicates
that there is no jump target cache implemented.

call_counter_size_p Number of bits in the nested call counter is
2call_counter_size_p. Minimum number of entries is 2,
so a value of 0 indicates that there is no implicit return call
counter implemented.

ctype_width_p Width of the ctype bus
context_width_p Width of context bus
time_width_p Width of time bus
ecause_width_p Width of exception cause bus
ecause_choice_p Number of bits of exception cause to match using multiple

choice
f0s_width_p Width of the subformat field in format 0 te_inst packets

(see section 7.8.1).
filter_context_p 0 or 1 Filtering on context supported when 1
filter_time_p 0 or 1 Filtering on time supported when 1
filter_excint_p Filtering on exception cause or interrupt supported when

non_zero. Number of nested exceptions supported is
2filter_excint_p

filter_privilege_p 0 or 1 Filtering on privilege supported when 1
filter_tval_p 0 or 1 Filtering on trap value supported when 1 (provided fil-

ter_excint_p is non-zero)
iaddress_lsb_p LSB of instruction address bus to trace. 1 is compressed

instructions are supported, 2 otherwise
iaddress_width_p Width of instruction address bus. This is the same as

DXLEN
iretire_width_p Width of the iretire bus
ilastsize_width_p Width of the ilastsize bus
itype_width_p Width of the itype bus
nocontext_p 0 or 1 Exclude context from te_inst packets if 1
notime_p 0 or 1 Exclude time from te_inst packets if 1
privilege_width_p Width of privilege bus
retires_p Maximum number of instructions that can be retired per

block
return_stack_size_p Number of entries in the return address stack is

2return_stack_size_p. Minimum number of entries is 2, so
a value of 0 indicates that there is no implicit return stack
implemented.

sijump_p 0 or 1 sijump is used to identify sequentially inferable jumps
impdef_width_p Width of implementation-defined input bus
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Table 10.2: Parameters to the encoder - data trace
Parameter name Range Description
daddress_width_p Width of the daddress bus
dblock_width_p Width of the dblock bus
data_width_p Width of the data bus
dsize_width_p Width of the dsize bus
dtype_width_p Width of the dtype bus
iaddr_lsbs_width_p Width of the iaddr_lsbs bus
lrid_width_p Width of the lrid bus
lresp_width_p Width of the lresp bus
ldata_width_p Width of the ldata bus
sdata_width_p Width of the sdata bus

10.1 Discovery of encoder parameters

To operate correctly, the decoder must be able to determine some of the encoder’s parameters
at runtime, in the form of discoverable attributes. These parameters must be discoverable by
the decoder, or else be fixed at the default value (in other words, if an encoder does not make
a particular parameter discoverable, it must implement only the default value of that parameter,
which the decoder will also use). Table 10.3 lists the required discoverable attributes for instruction
trace.

To access the discoverable attributes, some external entity, for example a debugger or a supervisory
hart, must request it from the encoder. The encoder will provide the discovery information in one or
more different formats. The preferred format is a packet which is sent over the trace infrastructure.
Another format would be allowing the external entity to read the values from some register or
memory mapped space maintained by the encoder. Section 10.2 gives an example of how this may
be accomplished.

For ease of use it is further recommended that all of the encoder’s parameters be mapped to
discoverable attributes, even if not directly required by the decoder. In particular, attributes related
to filtering capabilities. Table 10.4 lists the attributes associated with the filtering recommendations
discussed in Chapter 5, Table 10.5 lists attributes related to other instruction trace parameters
mentioned in this document, and Table 10.6 lists attributes related to data trace.
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Table 10.3: Required instruction trace attributes
Name Default Parameter mapping
arch 0 arch_p
bpred_size 0 bpred_size_p
cache_size 0 cache_size_p
call_counter_size 0 call_counter_size_p
context_width 0 context_width_p - 1
time_width 0 time_width_p - 1
ecause_width 3 ecause_width_p - 1
f0s_width 0 f0s_width_p
iaddress_lsb 0 iaddress_lsb_p - 1
iaddress_width 31 iaddress_width_p - 1
nocontext 1 nocontext
notime 1 notime
privilege_width 1 privilege_width_p - 1
return_stack_size 0 return_stack_size_p
sijump 0 sijump_p

Table 10.4: Optional filtering attributes
Name Default Parameter mapping
comparators 0 comparators_p - 1
filters 0 filters_p - 1
ecause_choice 5 ecause_choice_p
filter_context 1 filter_context_p
filter_time 1 filter_time_p
filter_excint 1 filter_excint_p
filter_privilege 1 filter_privilegep
filter_tval 1 filter_tval_p

Table 10.5: Other recommended attributes
Name Default Description
ctype_width 0 ctype_width_p - 1
ilastsize_width 0 ilastsize_width_p - 1
itype_width 3 itype_width_p - 1
iretire_width 1 iretire_width_p - 1
retires 0 retires_p - 1
impdef_width 0 impdef_width_p - 1
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Table 10.6: Data trace attributes
Name Default Description
daddress_width 31 daddress_width_p - 1
dblock_width 0 dblock_width_p - 1
data_width 31 data_width_p - 1
dsize_width 2 dsize_width_p - 1
dtype_width 0 dtype_width_p - 1
iaddr_lsbs_width 0 iaddr_lsbs_width_p - 1
lrid_width 0 lrid_width_p - 1
lresp_width 0 lresp_width_p - 1
ldata_width 31 ldata_width_p - 1
sdata_width 31 sdata_width_p - 1
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10.2 Example ipxact description

This section provides an example of discovery information represented in the ipxact form.

<?xml version="1.0" encoding="UTF-8"?>
<ipxact:component

xmlns:ipxact="http://www.accellera.org/XMLSchema/IPXACT/1685-2014"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.accellera.org/XMLSchema/IPXACT/1685-2014

http://www.accellera.org/XMLSchema/IPXACT/1685-2014/index.xsd">
<ipxact:vendor>Siemens</ipxact:vendor>
<ipxact:library>TraceEncoder</ipxact:library>
<ipxact:name>TraceEncoder</ipxact:name>
<ipxact:version>0.8</ipxact:version>
<ipxact:memoryMaps>

<ipxact:memoryMap>
<ipxact:name>Trace Encoder Register Map</ipxact:name>
<ipxact:addressBlock>

<ipxact:name>>Trace Encoder Register Address Block</ipxact:name>
<ipxact:baseAddress>0</ipxact:baseAddress>
<ipxact:range>128</ipxact:range>
<ipxact:width>64</ipxact:width>

<ipxact:register>
<ipxact:name>discovery_info_0</ipxact:name>
<ipxact:addressOffset>’h0</ipxact:addressOffset>
<ipxact:size>64</ipxact:size>
<ipxact:access>read-only</ipxact:access>
<ipxact:field>

<ipxact:name>version</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>0</ipxact:bitOffset>
<ipxact:bitWidth>4</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>minor_revision</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>4</ipxact:bitOffset>
<ipxact:bitWidth>4</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>arch</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>8</ipxact:bitOffset>
<ipxact:bitWidth>4</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>
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<ipxact:name>bpred_size</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>12</ipxact:bitOffset>
<ipxact:bitWidth>4</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>cache_size</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>16</ipxact:bitOffset>
<ipxact:bitWidth>4</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>call_counter_size</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>20</ipxact:bitOffset>
<ipxact:bitWidth>3</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>comparators</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>23</ipxact:bitOffset>
<ipxact:bitWidth>3</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>context_type_width</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>26</ipxact:bitOffset>
<ipxact:bitWidth>5</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>context_width</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>31</ipxact:bitOffset>
<ipxact:bitWidth>5</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>ecause_choice</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>36</ipxact:bitOffset>
<ipxact:bitWidth>3</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>ecause_width</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>39</ipxact:bitOffset>
<ipxact:bitWidth>4</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>
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<ipxact:name>filters</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>43</ipxact:bitOffset>
<ipxact:bitWidth>4</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>filter_context</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>47</ipxact:bitOffset>
<ipxact:bitWidth>1</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>filter_excint</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>48</ipxact:bitOffset>
<ipxact:bitWidth>4</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>filter_privilege</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>52</ipxact:bitOffset>
<ipxact:bitWidth>1</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>filter_tval</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>53</ipxact:bitOffset>
<ipxact:bitWidth>1</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>filter_impdef</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>54</ipxact:bitOffset>
<ipxact:bitWidth>1</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>f0s_width</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>55</ipxact:bitOffset>
<ipxact:bitWidth>2</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>iaddress_lsb</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>57</ipxact:bitOffset>
<ipxact:bitWidth>2</ipxact:bitWidth>

</ipxact:field>
</ipxact:register>
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<ipxact:register>
<ipxact:name>discovery_info_1</ipxact:name>
<ipxact:addressOffset>’h4</ipxact:addressOffset>
<ipxact:size>64</ipxact:size>
<ipxact:access>read-only</ipxact:access>
<ipxact:field>

<ipxact:name>iaddress_width</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>0</ipxact:bitOffset>
<ipxact:bitWidth>7</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>ilastsize_width</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>7</ipxact:bitOffset>
<ipxact:bitWidth>7</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>itype_width</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>14</ipxact:bitOffset>
<ipxact:bitWidth>7</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>iretire_width</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>21</ipxact:bitOffset>
<ipxact:bitWidth>7</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>nocontext</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>28</ipxact:bitOffset>
<ipxact:bitWidth>1</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>privilege_width</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>29</ipxact:bitOffset>
<ipxact:bitWidth>2</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>retires</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>31</ipxact:bitOffset>
<ipxact:bitWidth>3</ipxact:bitWidth>
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</ipxact:field>
<ipxact:field>

<ipxact:name>return_stack_size</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>34</ipxact:bitOffset>
<ipxact:bitWidth>4</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>sijump</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>38</ipxact:bitOffset>
<ipxact:bitWidth>1</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>taken_branches</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>39</ipxact:bitOffset>
<ipxact:bitWidth>4</ipxact:bitWidth>

</ipxact:field>
<ipxact:field>

<ipxact:name>impdef_width</ipxact:name>
<ipxact:description>text</ipxact:description>
<ipxact:bitOffset>43</ipxact:bitOffset>
<ipxact:bitWidth>5</ipxact:bitWidth>

</ipxact:field>
</ipxact:register>

</ipxact:addressBlock>
<ipxact:addressUnitBits>8</ipxact:addressUnitBits>

</ipxact:memoryMap>
</ipxact:memoryMaps>

</ipxact:component>
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Decoder

This decoder implementation assumes there is no branch predictor or return address stack (re-
turn_stack_size_p and bpred_size_p both zero).

Reference Python implementations of both the encoder and decoder can be found at
https://github.com/riscv-non-isa/riscv-trace-spec.

11.1 Decoder pseudo code

# global variables
global pc # Reconstructed program counter
global last_pc # PC of previous instruction
global branches = 0 # Number of branches to process
global branch_map = 0 # Bit vector of not taken/taken (1/0) status

# for branches
global bool stop_at_last_branch = FALSE # Flag to indicate reconstruction is to end at

# the final branch
global bool inferred_address = FALSE # Flag to indicate that reported address from

# format 0/1/2 was not following an uninferable
# jump (and is therefore inferred)

global bool start_of_trace = TRUE # Flag indicating 1st trace packet still
# to be processed

global address # Reconstructed address from te_inst messages
global options # Operating mode flags
global array return_stack # Array holding return address stack
global irstack_depth = 0 # Depth of the return address stack

83

https://github.com/riscv-non-isa/riscv-trace-spec


84 Efficient Trace for RISC-V Version 1.1.3-Frozen

# Process te_inst packet. Call each time a te_inst packet is received #
function process_te_inst (te_inst)

if (te_inst.format == 3)
if (te_inst.subformat == 3) # Support packet

process_support(te_inst)
return

if (te_inst.subformat == 2) # Context packet
return

if (te_inst.subformat == 1) # Trap packet
report_trap(te_inst)
if (!te_inst.interrupt) # Exception

report_epc(exception_address(te_inst))
if (!te_inst.thaddr) # Trap only - nothing retired

return

inferred_address = FALSE
address = (te_inst.address << discovery_response.iaddress_lsb)
if (te_inst.subformat == 1 or start_of_trace)

branches = 0
branch_map = 0

if (is_branch(get_instr(address))) # 1 unprocessed branch if this instruction is a branch
branch_map = branch_map | (te_inst.branch << branches)
branches++

if (te_inst.subformat == 0 and !start_of_trace)
follow_execution_path(address, te_inst)

else
pc = address
report_pc(pc)
last_pc = pc # previous pc not known but ensures correct

# operation for is_sequential_jump()

start_of_trace = FALSE
irstack_depth = 0

else # Duplicated at top of next page to show continuity
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else # Duplicate of last line from previous page to show continuity
if (start_of_trace) # This should not be possible!

ERROR: Expecting trace to start with format 3
return

if (te_inst.format == 2 or te_inst.branches != 0)
stop_at_last_branch = FALSE
if (options.full_address)

address = (te_inst.address << discovery_response.iaddress_lsb)
else

address += (te_inst.address << discovery_response.iaddress_lsb)
if (te_inst.format == 1)

stop_at_last_branch = (te_inst.branches == 0)
# Branch map will contain <= 1 branch (1 if last reported instruction was a branch)
branch_map = branch_map | (te_inst.branch_map << branches)
if (te_inst.branches == 0)

branches += 31
else

branches += te_inst.branches

follow_execution_path(address, te_inst)
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# Follow execution path to reported address #
function follow_execution_path(address, te_inst)

local previous_address = pc
local stop_here = FALSE
while (TRUE)

if (inferred_address) # iterate again from previously reported address to
# find second occurrence

stop_here = next_pc(previous_address)
report_pc(pc)
if (stop_here)

inferred_address = FALSE
else

stop_here = next_pc(address)
report_pc(pc)
if (branches == 1 and is_branch(get_instr(pc)) and stop_at_last_branch)

# Reached final branch - stop here (do not follow to next instruction as
# we do not yet know whether it retires)
stop_at_last_branch = FALSE
return

if (stop_here)
# Reached reported address following an uninferable discontinuity - stop here
if (branches > (is_branch(get_instr(pc)) ? 1 : 0))

# Check all branches processed (except 1 if this instruction is a branch)
ERROR: unprocessed branches

return
if (te_inst.format != 3 and pc == address and !stop_at_last_branch and

(te_inst.notify != get_preceding_bit(te_inst, "notify")) and
(branches == (is_branch(get_instr(pc)) ? 1 : 0)))

# All branches processed, and reached reported address due to notification,
# not as an uninferable jump target

return
if (te_inst.format != 3 and pc == address and !stop_at_last_branch and

!is_uninferable_discon(get_instr(last_pc)) and
(te_inst.updiscon == get_preceding_bit(te_inst, "updiscon")) and
(branches == (is_branch(get_instr(pc)) ? 1 : 0)) and
((te_inst.irreport == get_previous_bit(te_inst, "irreport")) or
te_inst.irdepth == irstack_depth))
# All branches processed, and reached reported address, but not as an
# uninferable jump target
# Stop here for now, though flag indicates this may not be
# final retired instruction

inferred_address = TRUE
return

if (te_inst.format == 3 and pc == address and
(branches == (is_branch(get_instr(pc)) ? 1 : 0)))
# All branches processed, and reached reported address
return
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# Compute next PC #
function next_pc (address)

local instr = get_instr(pc)
local this_pc = pc
local stop_here = FALSE

if (is_inferable_jump(instr))
pc += instr.imm

else if (is_sequential_jump(instr, last_pc)) # lui/auipc followed by
# jump using same register

pc = sequential_jump_target(pc, last_pc)
else if (is_implicit_return(instr))

pc = pop_return_stack()
else if (is_uninferable_discon(instr))

if (stop_at_last_branch)
ERROR: unexpected uninferable discontinuity

else
pc = address
stop_here = TRUE

else if (is_taken_branch(instr))
pc += instr.imm

else
pc += instruction_size(instr)

if (is_call(instr))
push_return_stack(this_pc)

last_pc = this_pc
return stop_here

# Process support packet #
function process_support (te_inst)

local stop_here = FALSE

options = te_inst.options
if (te_inst.qual_status != no_change)

start_of_trace = TRUE # Trace ended, so get ready to start again
if (te_inst.qual_status == ended_ntr and inferred_address)

local previous_address = pc
inferred_address = FALSE
while (TRUE)

stop_here = next_pc(previous_address)
report_pc(pc)
if (stop_here)

return
return
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# Determine if instruction is a branch, adjust branch count/map,
# and return taken status #
function is_taken_branch (instr)

local bool taken = FALSE

if (!is_branch(instr))
return FALSE

if (branches == 0)
ERROR: cannot resolve branch

else
taken = !branch_map[0]
branches--
branch_map >> 1

return taken

# Determine if instruction is a branch #
function is_branch (instr)

if ((instr.opcode == BEQ) or
(instr.opcode == BNE) or
(instr.opcode == BLT) or
(instr.opcode == BGE) or
(instr.opcode == BLTU) or
(instr.opcode == BGEU) or
(instr.opcode == C.BEQZ) or
(instr.opcode == C.BNEZ))

return TRUE

return FALSE

# Determine if instruction is an inferable jump #
function is_inferable_jump (instr)

if ((instr.opcode == JAL) or
(instr.opcode == C.JAL) or
(instr.opcode == C.J) or
(instr.opcode == JALR and instr.rs1 == 0))

return TRUE

return FALSE



Efficient Trace for RISC-V Version 1.1.3-Frozen 89

# Determine if instruction is an uninferable jump #
function is_uninferable_jump (instr)

if ((instr.opcode == JALR and instr.rs1 != 0) or
(instr.opcode == C.JALR) or
(instr.opcode == C.JR))

return TRUE

return FALSE

# Determine if instruction is an uninferable discontinuity #
function is_uninferable_discon (instr)

if (is_uninferable_jump(instr) or
(instr.opcode == URET) or
(instr.opcode == SRET) or
(instr.opcode == MRET) or
(instr.opcode == DRET) or
(instr.opcode == ECALL) or
(instr.opcode == EBREAK) or
(instr.opcode == C.EBREAK))

return TRUE

return FALSE

# Determine if instruction is a sequentially inferable jump #
function is_sequential_jump (instr, prev_addr)

if (not (is_uninferable_jump(instr) and options.sijump))
return FALSE

local prev_instr = get_instr(prev_addr)

if((prev_instr.opcode == AUIPC) or
(prev_instr.opcode == LUI) or
(prev_instr.opcode == C.LUI))

return (instr.rs1 == prev_instr.rd)

return FALSE
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# Find the target of a sequentially inferable jump #
function sequential_jump_target (addr, prev_addr)

local instr = get_instr(addr)
local prev_instr = get_instr(prev_addr)
local target = 0

if (prev_instr.opcode == AUIPC)
target = prev_addr

target += prev_instr.imm
if (instr.opcode == JALR)

target += instr.imm

return target

# Determine if instruction is a call #
# - excludes tail calls as they do not push an address onto the return stack
function is_call (instr)

if ((instr.opcode == JALR and instr.rd == 1) or
(instr.opcode == C.JALR) or
(instr.opcode == JAL and instr.rd == 1) or
(instr.opcode == C.JAL))

return TRUE

return FALSE

# Determine if instruction return address can be implicitly inferred #
function is_implicit_return (instr)

if (options.implicit_return == 0) # Implicit return mode disabled
return FALSE

if ((instr.opcode == JALR and instr.rs1 == 1 and instr.rd == 0) or
(instr.opcode == C.JR and instr.rs1 == 1))

if ((te_inst.irreport != get_preceding_bit(te_inst, "irreport")) and
te_inst.irdepth == irstack_depth)

return FALSE
return (irstack_depth > 0)

return FALSE
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# Push address onto return stack #
function push_return_stack (address)

if (options.implicit_return == 0) # Implicit return mode disabled
return

local irstack_depth_max = discovery_response.return_stack_size ?
2**discovery_response.return_stack_size :
2**discovery_response.call_counter_size

local instr = get_instr(address)
local link = address

if (irstack_depth == irstack_depth_max)
# Delete oldest entry from stack to make room for new entry added below
irstack_depth--
for (i = 0; i < irstack_depth; i++)

return_stack[i] = return_stack[i+1]

link += instruction_size(instr)

return_stack[irstack_depth] = link
irstack_depth++

return

# Pop address from return stack #
function pop_return_stack ()

irstack_depth-- # function not called if irstack_depth is 0, so no need
# to check for underflow

local link = return_stack[irstack_depth]

return link

# Return the address of an exception #
function exception_address(te_inst)

local instr = get_instr(pc)

if (is_uninferable_discon(instr) and !te_inst.thaddr)
return te_inst.address

if (instr.opcode == ECALL) or (instr.opcode == EBREAK) or (instr.opcode == C.EBREAK))
return pc

return next_pc(pc)
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# Report ecause and tval (user to populate if desired) #
function report_trap(te_inst)

return

# Report program counter value (user to populate if desired) #
function report_pc(address)

return

# Report exception program counter value (user to populate if desired) #
function report_epc(address)

return
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Example code and packets

In the following examples ret is referred to as uninferable, this is only true if implicit-return mode
is off

1. Call to debug_printf(), from 80001a84, in main():

00000000800019e8 <main>:
........: ...
80001a80: f6d42423 sw a3,-152(s0)
80001a84: ef4ff0ef jal x1,80001178 <debug_printf>

PC: 80001a84 ->80001178
The target of the jal is inferable, thus NO te_inst packet is sent.

0000000080001178 <debug_printf>:
80001178: 7139 addi sp,sp,-64
8000117a: ...

2. Return from debug_printf():

80001186: ...
80001188: 6121 addi sp,sp,64
8000118a: 8082 ret

PC: 8000118a ->80001a88
The target of the ret is uninferable, thus a te_inst packet IS sent:
te_inst[format=2 (ADDR_ONLY): address=0x80001a88, updiscon=0]
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80001a88: 00000597 auipc a1,0x0
80001a8c: 65058593 addi a1,a1,1616 # 800020d8 <main+0x6f0>

3. exiting from Func_2(), with a final taken branch, followed by a ret

00000000800010b6 <Func_2>:
........: ....
800010da: 4781 li a5,0
800010dc: 00a05863 blez a0,800010ec <Func_2+0x36>

PC: 800010dc ->800010ec, add branch TAKEN to branch_map, but no packet sent yet.
branches = 0; branch_map = 0;
branch_map |= 0 «branches++;

800010ec: 60e2 ld ra,24(sp)
800010ee: 6442 ld s0,16(sp)
800010f0: 64a2 ld s1,8(sp)
800010f2: 853e mv a0,a5
800010f4: 6105 addi sp,sp,32
800010f6: 8082 ret

PC: 800010f6 ->80001b8a
The target of the ret is uninferable, thus a te_inst packet is sent, with ONE branch in the
branch_map
te_inst[ format=1 (DIFF_DELTA): branches=1, branch_map=0x0, address=0x80001b8a
(∆=0xab0) updiscon=0 ]

00000000800019e8 <main>:
........: ....
80001b8a: f4442603 lw a2,-188(s0)
80001b8e: ....

4. 3 branches, then a function return back to Proc_1()

0000000080001100 <Proc_6>:
........: ....
80001112: c080 sw s0,0(s1)
80001114: 4785 li a5,1
80001116: 02f40463 beq s0,a5,8000113e <Proc_6+0x3e>

PC: 80001116 ->8000111a, add branch NOT taken to branch_map, but no packet sent yet.
branches = 0; branch_map = 0; branch_map |= 1 «branches++;
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8000111a: c81d beqz s0,80001150 <Proc_6+0x50>

PC: 8000111a ->8000111c, add branch NOT taken to branch_map, but no packet sent yet.
branch_map |= 1 «branches++;

8000111c: 4709 li a4,2
8000111e: 04e40063 beq s0,a4,8000115e <Proc_6+0x5e>

PC: 8000111e ->8000115e, add branch TAKEN to branch_map, but no packet sent yet.
branch_map |= 0 «branches++;

8000115e: 60e2 ld ra,24(sp)
80001160: 6442 ld s0,16(sp)
80001162: c09c sw a5,0(s1)
80001164: 64a2 ld s1,8(sp)
80001166: 6105 addi sp,sp,32
80001168: 8082 ret

00000000800011d6 <Proc_1>:
........: ....
80001258: 00093783 ld a5,0(s2)
8000125c: ....

PC: 80001168 ->80001258
The target of the ret is uninferable, thus a te_inst packet is sent, with THREE branches in
the branch_map
te_inst[ format=1 (DIFF_DELTA): branches=3, branch_map=0x3, address=0x80001258
(∆=0x148), updiscon=0 ]

5. A complex example with 2 branches, 2 jal, and a ret

00000000800011d6 <Proc_1>:
........: ....
8000121c: 441c lw a5,8(s0)
8000121e: c795 beqz a5,8000124a <Proc_1+0x74>

PC: 8000121e ->8000124a, add branch TAKEN to branch_map, but no packet sent yet.
branches = 0; branch_map = 0;
branch_map |= 0 «branches++;

8000124a: 44c8 lw a0,12(s1)
8000124c: 4799 li a5,6
8000124e: 00c40593 addi a1,s0,12
80001252: c81c sw a5,16(s0)
80001254: eadff0ef jal x1,80001100 <Proc_6>
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PC: 80001254 ->80001100
The target of the jal is inferable, thus no te_inst packet needs be sent.

0000000080001100 <Proc_6>:
80001100: 1101 addi sp,sp,-32
80001102: e822 sd s0,16(sp)
80001104: e426 sd s1,8(sp)
80001106: ec06 sd ra,24(sp)
80001108: 842a mv s0,a0
8000110a: 84ae mv s1,a1
8000110c: fedff0ef jal x1,800010f8 <Func_3>

PC: 8000110c ->800010f8
The target of the jal is inferable, thus no te_inst packet needs to be sent.

00000000800010f8 <Func_3>:
800010f8: 1579 addi a0,a0,-2
800010fa: 00153513 seqz a0,a0
800010fe: 8082 ret

PC: 800010fe ->80001110
The target of the ret is uninferable, thus a te_inst packet will be sent shortly.

0000000080001100 <Proc_6>:
........: ....
80001110: c115 beqz a0,80001134 <Proc_6+0x34>
80001112: ....

PC: 80001110 ->80001112, add branch NOT TAKEN to branch_map.
branch_map |= 1 «branches++;
te_inst[ format=1 (DIFF_DELTA): branches=2, branch_map=0x2, address=0x80001110
(∆=0xfffffffffffffef4), updiscon=1 ]



Chapter 13

Code fragment and transport

This section shows fragments of code, and associated data from one of the architectural tests in
the repository. For the individual fragments the ingress signals are shown and the corresponding
packets generated. It further shows how the packets are transported via on-chip transport fabric.
The fragments shown below are extracted from the test whilst it is being executed. In order to give
some context to the fragment of interest, code prior to and after the fragment is also given.

13.1 Illegal Opcode test

In this example the test executes an illegal opcode (at line labelled 14) and traps. We show the
output from the patched spike execution in line 30. The input signals to the encoder are shown
in lines labelled 38-46. The HART will have set the signals shown in line 42 when the illegal
instruction is executed and as can be seen it is not retired. Lines labelled 53, 56 and 59 show the
packets output from the encoder for this fragment.

13.1.1 Code fragment

1 : ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 : ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Fragment 0 x80000222 − 0 x80000226 : i l l e g a l _ o p c o d e ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
3 : ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4 : KEY: ">" means pre−fragment execut ion , "<" means post−fragment e x e c u t i o n
5 : ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ Part 1 o f 1 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
6 :
7 : e l f :
8 : > 0000000080000104 <j_exception_stimulus >:
9 : > 80000104: 00000297 auipc t0 , 0 x0
1 0 : > 80000108: 11 e28293 addi t0 , t0 , 2 8 6 # 80000222 <bad_opcode>
1 1 : > 8000010 c : 8282 j r t0
1 2 : > 80000154: 9282 j a l r t0
1 3 : 0000000080000222 <bad_opcode >:
1 4 : 80000222: 0000 unimp
1 5 : 80000224: 0000 unimp
1 6 : 80000226: b709 j 80000128 <j_target_end_fai l >
1 7 : < 00000000800001 b0 <machine_trap_entry >:
1 8 : < 800001 b0 : a805 j 800001 e0 <machine_trap_entry_0>
1 9 : < 00000000800001 e0 <machine_trap_entry_0 >:
2 0 : < 800001 e0 : 342023 f 3 c s r r t2 , mcause
2 1 : < 800001 e4 : f f f 0 0 3 1 b addiw t1 , zero ,−1
2 2 : < 800001 e8 : 137 e s l l i t1 , t1 , 0 x3f
2 3 :
2 4 : t r a c e _ s p i k e :
2 5 : ∗∗∗∗∗∗∗∗ Data from br_j_asm . spike_pc_trace l i n e 5029 ∗∗∗∗∗∗∗∗
2 6 : > ADDRESS=80000154 , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
2 7 : > ADDRESS=80000104 , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
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2 8 : > ADDRESS=80000108 , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
2 9 : > ADDRESS=8000010c , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
3 0 : ADDRESS=80000222 , PRIVILEGE=3, EXCEPTION=1, ECAUSE=2, TVAL=0, INTERRUPT=0
3 1 : < ADDRESS=800001b0 , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
3 2 : < ADDRESS=800001 e0 , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
3 3 : < ADDRESS=800001 e4 , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
3 4 : < ADDRESS=800001 e8 , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
3 5 :
3 6 : encoder_input :
3 7 : ∗∗∗∗∗∗∗∗ Data from br_j_asm . encoder_input l i n e 5029 ∗∗∗∗∗∗∗∗
3 8 : > UNINFERABLE_JUMP, cause =0, t v a l =0, p r i v =3, iaddr_0 =80000154 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =2
3 9 : > ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =80000104 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =4
4 0 : > ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =80000108 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =4
4 1 : > UNINFERABLE_JUMP, cause =0, t v a l =0, p r i v =3, iaddr_0 =8000010c , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =2
4 2 : EXCEPTION, cause =2, t v a l =0, p r i v =3, iaddr_0 =80000222 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =2,

−−−−−−−−−−> NOT RETIRED
4 3 : < ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =800001b0 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =2
4 4 : < ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =800001 e0 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =4
4 5 : < ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =800001 e4 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =4
4 6 : < ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =800001 e8 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =2
4 7 :
4 8 : t e _ i n s t :
4 9 : ∗∗∗∗∗∗∗∗ Data from br_j_asm . te_inst_annotated l i n e 5071 ∗∗∗∗∗∗∗∗
5 0 : > next =80000154 c u r r =80000150 prev =8000014 c
5 1 : > next =80000104 c u r r =80000154 prev =80000150
5 2 : > next =80000108 c u r r =80000104 prev =80000154
5 3 : > format =1, a d d r e s s =80000104 , branches =1, branch_map=0, i r r e p o r t =0, n o t i f y =0, updiscon =0,

Reason [ prev_updiscon ] Payload [ 0 5 04 01 00 80 0 0 ]
5 4 : > next =8000010 c c u r r =80000108 prev =80000104
5 5 : next =80000222 c u r r =8000010 c prev =80000108
5 6 : format =2, a d d r e s s =8000010c , i r r e p o r t =0, n o t i f y =0, updiscon =0, Reason [ exc_only ]

Payload [ 3 2 04 00 00 0 2 ]
5 7 : < next =800001b0 c u r r =80000222 prev =8000010 c
5 8 : < format =3, subformat=TRAP, a d d r e s s =80000222 , branch =1, c o n t e x t =0, e c a u s e =2, i n t e r r u p t =0,

p r i v i l e g e =3, thaddr =0, t v a l =0, Reason [ prev_updiscon , curr_exc_only ]
Payload [ 7 7 00 00 00 00 81 88 00 00 2 0 ]

5 9 : < format =3, subformat=START, a d d r e s s =800001b0 , branch =1, c o n t e x t =0,
p r i v i l e g e =3, Reason [ exception_prev , r e p o r t e d ]

Payload [ 7 3 00 00 00 00 6 c 00 00 1 0 ]
6 0 : < next =800001 e4 c u r r =800001 e0 prev =800001b0
6 1 : < next =800001 e8 c u r r =800001 e4 prev =800001 e0

13.1.2 Packet data

The output from the encoder for the fragment of interest is given in line 56. The least significant
byte is output first, this means 32 is byte 0, 04 is byte 1 and and the final value 02 is byte 4.

13.1.3 Siemens transport

The packet format is given in Figure 7.1. So this means the packet will be packed as follows:

• Header - 1 byte

• Index - N bits. As an example use 6 bits and the value of 1.

• Optional Siemens timestamp - 2 bytes. This example has no timestamp

• A type field for the packet of 2 bits ’01’ meaning instruction trace

• Payload - [32 04 00 00 02]

Since the Siemens transport is byte stream based the data seen will be:

[0x05][0x41][0x32 0x04 0x00 0x00 0x02]
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13.1.4 ATB transport

Assuming at 32 bit ATB transport results in the following ATB transfers

[ATID=1] [ATBYTES = 3] [ATDATA = 0x00043205]
[ATID=1] [ATBYTES = 1] [ATDATA = 0x00000200]

13.2 Timer Long Loop

13.2.1 Code fragment

1 : ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 : ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Fragment 0 x800001a2 − 0 x800001b0 : timer_long_loop ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
3 : ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4 : KEY: ">" means pre−fragment execut ion , "<" means post−fragment e x e c u t i o n
5 : ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ Part 443 o f 445 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
6 :
7 : e l f :
8 : > 80000194: f a b 5 0 c e 3 beq a0 , a1 ,8000014 c <timer_interrupt_return >
9 : > 80000198: 40430333 sub t1 , t1 , tp
1 0 : > 8000019 c : 34402473 c s r r s0 , mip
1 1 : > 800001 a0 : 8 c21 xor s0 , s0 , s0
1 2 : 800001 a2 : 300024 f 3 c s r r s1 , mstatus
1 3 : 800001 a6 : 8 ca5 xor s1 , s1 , s1
1 4 : 800001 a8 : f e 0 3 1 0 e 3 bnez t1 ,80000188 <timer_interrupt_long_loop>
1 5 : 800001 ac : bfb5 j 80000128 <j_target_end_fai l >
1 6 : 800001 ae : 0001 nop
1 7 : 00000000800001 b0 <machine_trap_entry >:
1 8 : 800001 b0 : a805 j 800001 e0 <machine_trap_entry_0>
1 9 : < 00000000800001 e0 <machine_trap_entry_0 >:
2 0 : < 800001 e0 : 342023 f 3 c s r r t2 , mcause
2 1 : < 800001 e4 : f f f 0 0 3 1 b addiw t1 , zero ,−1
2 2 : < 800001 e8 : 137 e s l l i t1 , t1 , 0 x3f
2 3 : < 800001 ea : 031d addi t1 , t1 , 7
2 4 :
2 5 : t r a c e _ s p i k e :
2 6 : ∗∗∗∗∗∗∗∗ Data from br_j_asm . spike_pc_trace l i n e 5000 ∗∗∗∗∗∗∗∗
2 7 : > ADDRESS=80000194 , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
2 8 : > ADDRESS=80000198 , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
2 9 : > ADDRESS=8000019c , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
3 0 : > ADDRESS=800001a0 , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
3 1 : ADDRESS=800001a2 , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
3 2 : ADDRESS=800001a6 , PRIVILEGE=3, EXCEPTION=1, ECAUSE=8000000000000007 , TVAL=0, INTERRUPT=1
3 3 : ADDRESS=800001b0 , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
3 4 : < ADDRESS=800001 e0 , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
3 5 : < ADDRESS=800001 e4 , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
3 6 : < ADDRESS=800001 e8 , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
3 7 : < ADDRESS=800001 ea , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
3 8 :
3 9 : encoder_input :
4 0 : ∗∗∗∗∗∗∗∗ Data from br_j_asm . encoder_input l i n e 5000 ∗∗∗∗∗∗∗∗
4 1 : > NONTAKEN_BRANCH, cause =0, t v a l =0, p r i v =3, iaddr_0 =80000194 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =4
4 2 : > ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =80000198 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =4
4 3 : > ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =8000019c , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =4
4 4 : > ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =800001a0 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =2
4 5 : ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =800001a2 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =4
4 6 : INTERRUPT, cause =7, t v a l =0, p r i v =3, iaddr_0 =800001a6 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =2,

−−−−−−−−−−> NOT RETIRED
4 7 : ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =800001b0 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =2
4 8 : < ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =800001 e0 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =4
4 9 : < ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =800001 e4 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =4
5 0 : < ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =800001 e8 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =2
5 1 : < ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =800001 ea , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =2
5 2 :
5 3 : t e _ i n s t :
5 4 : ∗∗∗∗∗∗∗∗ Data from br_j_asm . te_inst_annotated l i n e 5038 ∗∗∗∗∗∗∗∗
5 5 : > next =80000194 c u r r =80000192 prev =80000190
5 6 : > next =80000198 c u r r =80000194 prev =80000192
5 7 : > next =8000019 c c u r r =80000198 prev =80000194
5 8 : > next =800001 a0 c u r r =8000019 c prev =80000198
5 9 : next =800001 a2 c u r r =800001 a0 prev =8000019 c
6 0 : next =800001 a6 c u r r =800001 a2 prev =800001 a0
6 1 : format =1, a d d r e s s =800001a2 , branches =15 , branch_map=21845 , i r r e p o r t =0, n o t i f y =0, updiscon =0,

Reason [ exc_only ] Payload [ bd aa aa 68 00 00 2 0 ]
6 2 : next =800001b0 c u r r =800001 a6 prev =800001 a2
6 3 : < next =800001 e0 c u r r =800001b0 prev =800001 a6
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6 4 : < format =3, subformat=TRAP, a d d r e s s =800001b0 , branch =1, c o n t e x t =0, ec a u s e =7, i n t e r r u p t =1,
p r i v i l e g e =3, thaddr =1, Reason [ prev_exception ]

Payload [ 7 7 00 00 00 80 33 6 c 00 00 2 0 ]
6 5 : < next =800001 e4 c u r r =800001 e0 prev =800001b0
6 6 : < next =800001 e8 c u r r =800001 e4 prev =800001 e0
6 7 : < next =800001 ea c u r r =800001 e8 prev =800001 e4

13.2.2 Packet data

The output from the encoder for the fragment of interest is given in line 61. The least significant
byte is output first, this means 77 is byte 0, 00 is byte 1 and and the final value 20 is byte 9.

13.2.3 Siemens transport

The packet format is given in Figure 7.1. So this means the packet will be packed as follows:

• Header - 1 byte

• Index - N bits. As an example use 6 bits and the value of 0xA

• Optional Siemens timestamp - 2 bytes. This example has no timestamp

• A type field for the packet of 2 bits ’01’ meaning instruction trace

• Payload - [0xBD 0xAA 0xAA 0x68 0x00 0x00 0x20]

[0x7][0x29][0xBD 0xAA 0xAA 0x68 0x00 0x00 0x20]

13.2.4 ATB transport

Assuming at 32 bit ATB transport results in the following ATB transfers

[ATID=0xA] [ATBYTES = 3] [ATDATA = 0xAAAABD07]
[ATID=0xA] [ATBYTES = 3] [ATDATA = 0x20000068]

13.3 Startup xrle

13.3.1 Code fragment

1 : ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 : ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Fragment 0 x20010522 − 0 x20010528 : s t a r t u p _ x r l e ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
3 : ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4 : KEY: ">" means pre−fragment execut ion , "<" means post−fragment e x e c u t i o n
5 : ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ Part 1 o f 1 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
6 :
7 : e l f :
8 : 20010522 <main >:
9 : 20010522: 1141 addi sp , sp ,−16
1 0 : 20010524: c606 sw ra , 1 2 ( sp )
1 1 : 20010526: c422 sw s0 , 8 ( sp )
1 2 : 20010528: 0800 addi s0 , sp , 1 6
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1 3 : < 2001052 a : 800107 b7 l u i a5 , 0 x80010
1 4 : < 2001052 e : 6721 l u i a4 , 0 x8
1 5 : < 20010530: e8670713 addi a4 , a4 , −378 # 7 e86 <__heap_size+0x7686>
1 6 : < 20010534: 1 ae7aa23 sw a4 , 4 3 6 ( a5 ) # 800101 b4 <_sp+0 x f f f f f b f c >
1 7 :
1 8 : t r a c e _ s p i k e :
1 9 : ∗∗∗∗∗∗∗∗ Data from x r l e . spike_pc_trace l i n e 2 ∗∗∗∗∗∗∗∗
2 0 : ADDRESS=20010522 , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
2 1 : ADDRESS=20010524 , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
2 2 : ADDRESS=20010526 , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
2 3 : ADDRESS=20010528 , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
2 4 : < ADDRESS=2001052a , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
2 5 : < ADDRESS=2001052e , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
2 6 : < ADDRESS=20010530 , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
2 7 : < ADDRESS=20010534 , PRIVILEGE=3, EXCEPTION=0, ECAUSE=0, TVAL=0, INTERRUPT=0
2 8 :
2 9 : encoder_input :
3 0 : ∗∗∗∗∗∗∗∗ Data from x r l e . encoder_input l i n e 2 ∗∗∗∗∗∗∗∗
3 1 : ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =20010522 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =2
3 2 : ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =20010524 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =2
3 3 : ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =20010526 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =2
3 4 : ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =20010528 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =2
3 5 : < ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =2001052a , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =4
3 6 : < ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =2001052e , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =2
3 7 : < ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =20010530 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =4
3 8 : < ITYPE_NONE, cause =0, t v a l =0, p r i v =3, iaddr_0 =20010534 , c o n t e x t =0, ctype =0, i l a s t s i z e _ 0 =4
3 9 :
4 0 : t e _ i n s t :
4 1 : ∗∗∗∗∗∗∗∗ Data from x r l e . te_inst_annotated l i n e 2 ∗∗∗∗∗∗∗∗
4 2 : > format =3, subformat=SUPPORT, e n a b l e =1, encoder_mode=0, o p t i o n s =4, qual_status=0 Payload [ 1 f 0 4 ]
4 3 : next =20010522
4 4 : next =20010524 c u r r =20010522
4 5 : format =3, subformat=START, a d d r e s s =20010522 , branch =1, c o n t e x t =0,

p r i v i l e g e =3, Reason [ ppccd ]
Payload [ 7 3 00 00 00 00 91 82 00 1 0 ]

4 6 : next =20010526 c u r r =20010524 prev =20010522
4 7 : next =20010528 c u r r =20010526 prev =20010524
4 8 : < next =2001052a c u r r =20010528 prev =20010526
4 9 : < next =2001052 e c u r r =2001052a prev =20010528
5 0 : < next =20010530 c u r r =2001052 e prev =2001052a
5 1 : < next =20010534 c u r r =20010530 prev =2001052 e

13.3.2 Packet data

The output from the encoder for the fragment of interest is given in line 45. The least significant
byte is output first, this means 73 is byte 0, 00 is byte 1 and and the final value 10 is byte 8.

13.3.3 Siemens transport

The packet format is given in Figure 7.1. So this means the packet will be packed as follows:

• Header - 1 byte

• Index - N bits. As an example use 6 bits and the value of 0x5

• Optional timestamp - 2 bytes. This example has no timestamp

• A type field for the packet of 2 bits ’01’ meaning instruction trace

• Payload - [0x73 0x00 0x00 0x00 0x00 0x91 0x82 0x00 0x10]

[0x9][0x15][0x73 0x00 0x00 0x00 0x00 0x91 0x82 0x00 0x10]

13.3.4 ATB transport

Assuming at 32 bit ATB transport results in the following ATB transfers
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[ATID=0x5] [ATBYTES = 3] [ATDATA = 0x00007309]
[ATID=0x5] [ATBYTES = 3] [ATDATA = 0x82910000]
[ATID=0x5] [ATBYTES = 1] [ATDATA = 0x00001000]
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