P RISC-\V°

RISC-V RERI Architecture Specification

RERI Task Group

Version v1.0, 2024-05-24: Ratified



Table of Contents

Preamble
Copyright and license information
Contributors
1. Introduction
1.1. Faults and Errors
1.2. Fault Prevention
1.3. Error Detection and Correction
1.4. Error Prediction
1.5. RERI Features
1.6. Glossary
2. Error Reporting
2.1. Register Layout
2.2. Reset Behavior
2.3. Error Bank Header Registers
2.3.1. Vendor and Implementation ID (vendor_n_imp_id)
2.3.2. Error Bank Information (bank_info)
2.3.3. Summary of Valid Error Records (valid_summary)
2.4. Error Record Registers
2.4.1. Control Register (control_i)
2.4.2. Status Register (status_i)
2.4.3. Address-or-Information Register (addr_info_i)
2.4.4. Information Register (info_i)
2.4.5. Supplemental Information Register (suppl_info_i)
2.4.6. Timestamp Register (timestamp_i)
2.5. Error Record Overwrite Rules
2.6. Error Reporting Defined by Other Standards
2.7. Error Code Encodings
Bibliography

0 00 N O U1 U b W DN

NN NN NDNNDNR R B R R R Rl Rl | e,
0 T O b R R W WO o U R W W W N e



Preamble

This document is in the Ratified state

No changes are allowed. Any desired or needed changes can be the subject of a
follow-on new extension. Ratified extensions are never revised.


http://riscv.org/spec-state

Copyright and license information

This specification is licensed under the Creative Commons Attribution 4.0 International License
(CC-BY 4.0). The full license text is available at creativecommons.org/licenses/by/4.0/.

Copyright 2022 - 2024 by RISC-V International.


https://creativecommons.org/licenses/by/4.0/

Contributors

This RISC-V specification has been contributed to directly or indirectly by (in alphabetical order):

Aaron Durbin, Allen Baum, Andrew Walter, Anup Patel, Cameron McNairy, Dimitris Gizopoulos,
Daniele Rossi, David Kruckemeyer, Dhaval Sharma, Greg Favor, Himanshu Chauhan, Holger
Blasum, Mark Hill, Nicasio Canino, Paul Donahue, Petar Radojkovic, Shubu Mukherjee, Vedvyas
Shanbhogue, Xiaohan Ma



Chapter 1. Introduction

The RAS Error Record Register Interface (RERI) specification augments Reliability, Availability, and
Serviceability (RAS) features in the SoC with a standard mechanism for reporting errors by means
of a memory-mapped register interface to enable error reporting, provide the facility to log the
detected errors (including their severity, nature, and location), and configuring means to signal the
error to a RAS handler component. The RAS handler may use this information to determine
suitable recovery actions that may include terminating the computation (e.g., terminating a
process), restarting parts or all of the system, etc. to recover from the errors. Additionally, this
specification shall support software-initiated error logging, reporting, and testing of RAS handlers.
Lastly, this specification shall provide maximal flexibility to implement error handling and coexists
with RAS frameworks defined by other standards such as PCIe [1] and CXL [2].

A system is an entity that interacts with other entities such as other systems, software, operators,
etc. to deliver one or more services in its role as a service provider. A system may itself be a
consumer of one or more services provided by one or more other systems. A system thus is a
collection of interacting components that implement one or more functions to provide a service.

A service is the behavior as perceived by the consumers of the service. A system may implement
the service as one or more functions in the system. The functions used to compose the service may
be implemented by one or more components in the system.

A service is described as a set of states that can be observed by the consumer of the service. The set
of states observed by the consumer of the service may be further dependent on a set of internal
states of the functions that implement the service.

A service is said to be correct if the set of states observed by the consumer of the service match the
specification of that service. The specifications of a service may include its functional behavior,
performance goals, security objectives, and RAS requirements.

Reliability of a system as a function of time is the probability it continues to provide correct service
and may be characterized by metrics such as mean time between failures (MTBF). The services
provided by a reliable system fail on faults instead of silently producing incorrect results. Reliable
systems incorporate methods to detect occurrence of errors and to signal the errors to the
consumers of the service.

Availability of a system as a function of time is the probability that the system provides the
expected service and is a measure of tolerance to errors. Systems may increase their availability by
minimizing the impact of the errors in one part of the system to the rest of the system. This may be
achieved by means such as error correction, redundancy, state checkpoints and rollbacks, error
prediction, and error containment.

Serviceability is a measure of time to restore the service to correct operation with minimal
disruption to the consumers of the service. These may be achieved by means such as identifying
and reporting failures and supporting mechanisms to repair and bring the system back online.



1.1. Faults and Errors

A fault is an incorrect state resulting from failures of components or due to interference from the
environment in which the system operates. A fault is permanent if it reflects an irreversible change
to the observable system state and is transient otherwise. A permanent fault may occur due to a
physical defect or due to a flaw in the design of the functions implementing the service itself. A
transient fault may occur due to temporary environmental conditions (cosmic rays, voltage glitches,
etc.) or due to instability (e.g. marginal hardware).

Some faults that occur in a component may be dormant and only affect the internal state of the
component. Such dormant faults however may turn into active faults when that internal state is
used by the computation process in that component and produce an error. An error is detected
when its presence is indicated by an error message or signal.

Software faults may similarly cause errors that cause the service provided by the system to deviate
from its specification. Well known software engineering and reliability techniques may be
employed to prevent, detect and recover from software errors. Software errors are not in the scope
of this specification. Software should not have the ability to induce hardware errors.

A service failure occurs when the service deviates from its specification due to errors.
A reliable system deals with errors through one or more of the following techniques [3] [4]:

» Fault prevention
e Error detection and correction

* Error prediction

1.2. Fault Prevention

Fault prevention involves use of techniques that reduce or prevent errors that may occur after the
product has been shipped. These may be accomplished through the use of high quality in product
design, technology selection, materials selection, and manufacturing time screening for defects.
Through the use of systematic design, technology selection, and manufacturing tests many errors
such as those induced by electric fields, temperature stress, switching/coupling noise (e.g. DRAM
RowHammer [5] effect), incorrect V/F operating points, insufficient guard bands, meta-stability, etc.
can be prevented.

Faults that are not prevented may manifest as errors during operation of the system. Errors that
are not detected may still lead to a service failure. For example, an undetected error in an adder
used to produce the address of a load may produce a bad address which causes the load to incur an
exception and lead to a service failure. Some undetected errors however may not manifest as
exceptions and cause a service failure due to silent data corruption. For example, a circuit
performing encryption of a database may silently cause an error in the ciphertext produced leading
to the entire database being left in a state where it cannot be decrypted. Such undetected errors
that do not lead to a service failure are called Silent Data Errors (SDE). The impact of SDE is
generally much higher than errors that lead to a service failure. A resilient system attempts to
minimize the probability of SDE to the largest extent possible by implementing error detection
capabilities.



1.3. Error Detection and Correction

Error detection involves the use of coding and protocols to detect errors [6] [7]. For example, caches
with error correcting codes, TLB entries with parity protection, buses with parity protection on
transaction fields, circuitry to detect unexpected and/or illegal encodings, gray codes, voltage
sensors, clock/PLL monitors, timing margin sensors, etc. Some components such as memory
controllers may actively attempt to detect errors using techniques such as periodic background
scrubbing or on-demand scrubbing.

Error correction involves the use of techniques to correct the detected errors. Error correction may
be performed by employing error correcting codes and protocols. For example, a processor cache
may employ error correcting codes (ECC) to detect and correct errors. Some components may
recover from errors by using protocols that involve a retry. For example, a TLB that detects an error
may invalidate the entry and attempt to refill it from the page tables, a receiver on a bus that
detects an error may request the transmitter to retransmit the transaction, etc. Error correction is
thus complete when the error is either corrected or it does not recur on retry. Such errors that were
corrected by the hardware are called Corrected Errors (CE).

Errors that could not be corrected are called uncorrected errors. A component that detects an
uncorrected error may allow possibly corrupted data to propagate to the requester of the data but
associate an indicator (e.g., poison) with the data. Such errors are said to be Uncorrected Errors
Deferred (UED) as they allow the component to continue operation and defer dealing with the
error to a later point in time if the data corrupted by the error is consumed. Deferring errors allows
deferring the error handling to an ultimate consumer of the corrupted data that may be able to
provide more precise information to a RAS handler about the contexts affected by the corruption
and thus enable more precise error recovery actions by the RAS handler. The component that
detected and deferred the error may notify a RAS handler by reporting the UED but such a UED
does not need an immediate remedial action to be performed by the RAS handler. For example, a
memory controller may detect an uncorrectable ECC error on data in memory but since there is no
immediate consumer of the data the memory controller may just mark the data as poisoned and
defer the error handling to a component that requests the data. If the poisoned data is never
consumed then deferred errors are benign. If the poisoned data is completely overwritten with new
data then the associated poison is cleared. If the poisoned data is only partially written then the
data continues to be marked as poisoned.

A component that detects an uncorrected error may be unable to defer the handling of the error by
techniques such as poisoning. Such errors are said to be Uncorrected Errors Critical (UEC) and a
RAS handler is invoked as immediate remedial actions are required. For example, a cache
controller may detect an uncorrectable ECC error on the memory used to hold cache tags and since
such errors cannot be attributed to any particular data element these errors may be classified as
UEC. If poisoned data is attempted to be consumed by a component (e.g. a hart, an IOMMU, a
device, etc.) then an UEC occurs as immediate remedial actions are required and further deferral of
the error is not possible.

A component that signals a request for execution of an RAS handler for an UEC may indicate that
the error has not propagated beyond the boundaries of the component that detected the error and
thus may be containable through recovery actions (e.g., terminating the computation, etc.) carried
out by the RAS handler.



Some components act as an intermediary through which the data passes through. For example, a
PClIe/CXL port is an intermediary component that by itself does not consume the data it receives
from memory but forwards the data to the endpoint. In such cases the component may receive the
data with a deferred error. Such a component may propagate the error and not log an error by
itself. However, if the component to which the data is being propagated (e.g. a PCle endpoint) is not
capable of handling poison then the former component must signal a UEC instead of propagating
the corrupted data, as the act of propagation breaks containment of the error.

An error detected by a component may lead to a failure mode where the component may not be
able to service requests anymore (e.g. colloquially called jammed, wedged, etc.). For example, an
error in the hart pipeline may cause the hart to stop committing instructions, a fabric may be in a
state where it cannot process any further requests, the link connecting the memory module to the
host may have failed, etc. In such cases invoking a RAS handler may not be useful as the RAS
handler itself may need to generate requests to the failed component to perform the recovery
actions. Components in such failed states may use an implementation-defined signal to a system
recovery controller (e.g., a Baseboard Management Controller (BMC), an on-chip service controller,
etc.) to initiate a RAS-handling reset to restart the component, sub-system, or the system itself to
restore correct service operations.

1.4. Error Prediction

Error prediction involves the use of corrected errors as a predictor of future uncorrectable
permanent failures or other systemic issues, such as marginality due to aging. Monitoring corrected
errors may facilitate the avoidance of future service failures.

Studies indicate that the probability of an uncorrected DRAM error is elevated if the DIMM
previously experienced corrected errors [8] [9] [10]. Such reasoning is used by system protection
mechanisms, which utilize simple heuristics for offlining potentially failing memory pages [11] [12]
[13] [14] or for replacing compromised DIMMs [15] [8] [16].

Reporting of detected and corrected hardware errors is requisite for any quantitative analysis of
system resilience and for the prediction of future uncorrected errors [6]. This prediction capability
facilitates the deployment of preventive mechanisms, such as pre-failure alerts in High-
Performance Computing (HPC) cluster management software, thus mitigating the costs associated
with unscheduled outages and system repairs.

Components of a resilient system may also include corrected error counters to count the
corrections performed. Such components may additionally include a fixed or programmable
threshold to notify a RAS handler when the number of corrected errors surpasses the threshold.



1.5. RERI Features

Version 1.0 of the RISC-V RERI specification supports the following features:

Error severity classes and standard error codes.

Standard register format and addressing for memory-mapped error-record registers and error-
record banks.

Rules for prioritized overwriting of valid error records with new error records.

Corrected error counting.

* Error record injection for RAS handler testing.
This specification is intended to accommodate a wide variety of systems designs and needs - from
high-end server-class systems to low-end embedded systems. This is accomplished through
providing implementation flexibility and options - both within the registers of an error record and

the number of error records in an error bank, and with respect to the association between
hardware components and error errors/banks.

1.6. Glossary

Table 1. Terms and definitions

Term Definition

AER Advanced Error Reporting. A PCle capability to support advanced
error control and reporting.

BMC Baseboard Management Controller.

CE Corrected Error.

Custom A register or data structure field designated for custom use. Software

that is not aware of the custom use must ignore custom fields and
preserve value held in these fields when writing values to other fields
in the same register.

CXL Compute Express Link bus standard.

Data In this specification data refers broadly to all forms of information
being stored or transferred in a computing system. In the case of a
CPU, for example, this encompasses information that may be treated
as instructions that are fetched and executed, as well as data that is
loaded and stored.

DIMM Dual-In-line Memory Module. A packaging arrangement of memory
devices on a socketable substrate.

DRAM Dynamic random-access memory. Devices made using Dynamic RAM
circuit configurations that have data storage that must be refreshed
periodically.

ECC Error Correcting Code.



Term

Error Reporting

FSM

GPA
HPC

ID
IOMMU

NMI
(0N
PLL

PCle
RAS
RERI

Reserved

RO

RW

Definition

Error reporting is the process of logging information (including their
severity, nature, and location) about a detected error in an error
record and signaling, if required, the occurrence of the error to an
appropriate RAS handler.

Finite-State Machine. An abstract machine that can be in exactly one
of a finite number of states at any time.

Guest Physical Address. See Priv. specification.

High-performance Computing. High-Performance Computing (HPC)
refers to the use of parallel processing techniques to solve complex
computational problems. It enables faster data processing and
simulation by leveraging multiple processors or servers.

Identifier.

Input-Output Memory Management Unit. A system-level Memory
Management Unit (MMU) that connects direct-memory-access capable
Input/Output (I/0) devices to system memory.

Non-Maskable interrupt. See Priv. specification.
Operating System.

Phase-Locked Loop. A control system that generates an output signal
whose phase is related to the phase of an input signal. PLLs are
commonly used to perform clock synthesis.

Peripheral Component Interconnect Express bus standard.
Reliability, Availability, and Serviceability.
RAS error record register interface.

A register or data structure field reserved for future use. Reserved
fields in data structures must be set to 0 by software. Software must
ignore reserved fields in registers and preserve the value held in these
fields when writing values to other fields in the same register.

Read-Only - Register bits are read-only and cannot be altered by
software. Where explicitly defined, these bits are used to reflect
changing hardware state, and as a result bit values can be observed to
change at run time.

If the optional feature that would Set the bits is not implemented, the
bits must be hardwired to Zero

Read-Write - Register bits are read-write and are permitted to be
either Set or Cleared by software to the desired state.

If the optional feature that is associated with the bits is not
implemented, the bits are permitted to be hardwired to Zero.



Term

RW1C

RW1S

SDE
SOC

SPA
TLB
VA
UED
UEC
WARL

WPRI

10

Definition

Write-1-to-Clear status - Register bits indicate status when read. A Set
bit indicates a status event which is Cleared by writing a 1b. Writing a
0b to RW1C bits has no effect.

If the optional feature that would Set the bit is not implemented, the
bit must be read-only and hardwired to Zero

Read-Write-1-to-Set - register bits indicate status when read. The bit
may be Set by writing 1b. Writing a Ob to RW1S bits has no effect.

If the optional feature that introduces the bit is not implemented, the
bit must be read-only and hardwired to Zero

Silent Data Error.

System On a Chip, also referred as System-On-a-Chip and System-On-
Chip.

Supervisor Physical Address. See Priv. specification.
Translation Lookaside Buffer.

Virtual Address. See Priv. specification.
Uncorrected Error Deferred.

Uncorrected Error Critical.

Write Any values, Reads Legal values: Attribute of a register field that
is only defined for a subset of bit encodings, but allow any value to be
written while guaranteeing to return a legal value whenever read.

Writes Preserve values, Reads Ignore values: Attribute of a register
field that is reserved for future standard use.



Chapter 2. Error Reporting

Components, such as a RISC-V hart or a memory controller, in a system that support error detection
may implement one or more banks of error records. Each error bank may implement one or more
error records. Each error record corresponds to one or more hardware units of the component and
reports errors detected by those hardware units. A hardware unit may implement multiple error
records. One or more error records may be valid at any given time due to one or more hardware
units in the component detecting an error or due to a hardware unit having detected one or more
errors.

Each error bank is memory-mapped starting at an 8-byte aligned physical address and may include
up to 63 error records. Each error record is a set of registers used to control that error record and
to report status, address, and other information relevant to the error recorded in that error record.

Implementations may use a coarser alignment for the start address of an error
bank. For example, some implementations may locate the error bank within a

o naturally aligned 4-KiB region (a page) of physical address space for each error
bank, i.e., one page per bank. Coarser alignments may enable register decoding to
be implemented without a hardware adder circuit.

The behavior for register accesses where the address is not aligned to the size of the access, or if the
access spans multiple registers, or if the size of the access is not 4 bytes or 8 bytes, is UNSPECIFIED. An
aligned 4-byte access to a RERI register must be single-copy atomic. Whether an 8-byte access to an
RERI register is single-copy atomic is UNSPECIFIED, and such an access may appear, internally to the
RERI implementation, as if two separate 4-byte accesses were performed.

The RERI registers are defined in such a way that software can perform two
individual 4 byte accesses, or hardware can perform two independent 4 byte

e transactions resulting from an 8 byte access, to the high and low halves of the
register as long as the register’s semantics, with regards to side-effects, are
respected between the two software accesses, or two hardware transactions,
respectively.

The RERI registers have little-endian byte order (even for systems where all harts are big-endian-
only).

Big-endian-configured harts using RERI may implement the REV8 byte-reversal
o instruction defined by the Zbb extension. If REV8 is not implemented, then
endianness conversion may be implemented using a sequence of instructions.

An implementation-specific response occurs if the error bank and/or record is unavailable (e.g.,
powered down) to memory-mapped accesses. For example, an error bank and/or record may
respond with all zero data on reads and may ignore writes. Other implementations may, for
example, signal an error response on the attempted transaction.

An error bank that is otherwise available for memory-mapped accesses must respond with all zero
data on reads and must ignore writes to unimplemented registers in the page.

11



2.1. Register Layout

The error bank registers are organized as a 64-byte header providing information about the error
bank followed by an array of 64-byte error records. The offset of the error record numbered i in
the bank is (64 + 1 * 64) where i may range from 0 to 62.

Table 2. Error bank Memory-mapped register layout

Offset Name Size Description
0 vendor_n_imp_id 8 Vendor and implementation ID.
8 bank_info 8  Error bank information.
16 valid_summary 8 Summary of valid error records.
24 Reserved 32 Reserved for future standard use.
56 Custom 8 Designated for custom use.
64+64*1 control_i 8 Control register of error record i.
72 +64%i status_i 8  Status register of error record i.
80 + 64 *i addr_info_i 8  Address-or-info. register of error record i.
88 + 64 *i info_i 8 Information register of error record i.
96 + 64 *i suppl_info_i 8 Supplemental information register of error record i.
104 +64*i  timestamp_i 8 Timestamp register of error record i.

112 +64 *1i Reserved 16 Reserved for future standard use.

All registers and register fields defined by this specification are WARL unless noted otherwise.
While all registers and register fields of an error bank and the error records in an error bank must
exist, is legal to implement a register and/or register field of as read-only zero or a read-only legal
value if they are not required to report errors information in an implementation.

The number of error banks, the number of error records in an error bank and the
amount of information reported in an error record may be implemented to meet
the needs of the implementation. The error records are only required to
implement the registers and register fields needed to report error information that
is legally produced by the implementation.

o A minimal implementation with one error bank, which contains one error record
only consumes 128 bytes of address space. In terms of storage, the minimal
implementation requires only two bits of storage, for the v (valid) bit and the rdip
(read-in-progress) bit, in the status_i register in the single error record. All other
register fields of the bank header and error record are WARL and may be
hardwired to read-only zero or read-only one as appropriate.

12



2.2. Reset Behavior
The reset value is UNSPECIFIED for RERI registers.

The registers of an error bank may preserve their value across certain types of reset. For example, a
warm reset or a RAS initiated reset may preserve the register values whereas a cold reset may reset
the values back to their initial state.

Under normal circumstances, when an error is signaled, the RAS handler retrieves
the logged errors to process the error condition. In some cases, the RAS handler

e may not be able to do such processing. For example, the system may be unable to
support execution of the RAS handler and cause a RAS initiated reset. Preserving
the information logged in error records across such resets allows reporting of
unhandled errors that occurred in a previous boot of the system.

All registers in an error bank must have the same reset behavior.

2.3. Error Bank Header Registers

2.3.1. Vendor and Implementation ID (vendor_n_imp_id)

The vendor_n_imp_id register is a read-only register and its layout is:

Figure 1. Vendor and implementation ID

The vendor_id field follows the encoding as defined by mvendorid CSR and provides the JEDEC
manufacturer ID of the provider of the component hosting the error bank. A value of 0 may be
returned to indicate the field is not implemented or that this is a non-commercial implementation.

The imp_id provides a unique identity, defined by the vendor, to identify the component and
revisions of the component implementation hosting the error bank. A value of 0 may be returned to
indicate that the field is not implemented. The value returned should reflect the design of the
component itself and not of the surrounding system.

o The vendor_id and the imp_id are expected to be used as a identifier to determine
the format of fields and encodings that are UNSPECIFIED by this specification.

13



2.3.2. Error Bank Information (bank_info)

The bank_info is a read-only register and its layout is as follows:

63 56 55 32
N N .
31 24 23 22 21 16 15 0
L owew  Jeew] omemee [ wsw |

Figure 2. Error bank information

The version field returns the version of the architectural register layout specification implemented
by the error bank. The version defined by this specification is 0x01. The encodings 0xFO through
OxFF of this field are designated for custom use.

The layout field along with the version field indicates the layout of the registers in the error bank
and the error records. The layout encoding O indicates the registers are arranged and have
meaning as defined by this specification.

The offset of the version and the layout fields in the error bank shall not change

across versions of the specification or the layouts defined by a version. Software

should first read the version and layout fields and use the values to determine the
o register layout.

The layout field may be used for future standard extensions to define segment
specific extensions to the error bank and/or the error records.

The inst_id field identifies a unique instance of an error bank, within a package or at least a silicon
die, of the component; ideally unique in the whole system. The inst_id is defined by the vendor of
the system as a unique identifier for the component. A value of 0 may be returned to indicate the
field is not implemented.

The inst_id is expected to be collected and logged as part of the RAS error logs.
These may allow the vendor of the silicon to make inferences about the instances

o of the components that may be vulnerable. As these values differ between vendors
of the system and even among systems provided by the same vendor, these are not
expected to be useful to the majority of software besides software intimately
familiar with that system implementation.

The n_err_recs field indicates the number of error records implemented by the error bank. The
field is allowed to have an unsigned value between 1 and 63. The error records of an error bank are
located in the memory mapped region reserved for the error bank such that the first error record is
at offset 64 and the last error record at offset (64 + 63 * n_err_recs).

14



2.3.3. Summary of Valid Error Records (valid_summary)

The valid_summary is a read-only register and its layout is as follows:

63 48
- . eweew ]
47 32
- s ]
31 16
- s ]
15 1 0
I D D R

Figure 3. Summary of valid error records

The sv bit when 1 indicates that the valid_bitmap provides a summary of the valid bits from the
status registers of this error bank. If this bit is 0 then the error bank does not provide a summary of
valid bits and the valid_bitmap is 0.

If SV is 1, then software may use the valid_bitmap to determine which error records

o in the bank are valid. If this bit is 0 then software must read the status_register_i
of each implemented error record in this bank to determine if there is a valid
error logged in that error record.

15



2.4. Error Record Registers

2.4.1. Control Register (control_i)

The control_i is a read/write WARL register used to control error reporting by the corresponding
error record in the error bank. The layout of this register is as follows:

63 60 59 50 49 48

L e 0w | ew | e
47 32

| @ ]
31 16

| weer
15 8 7 6 5 4 3 2 1 0

| WIZ’RI ue:cs ue:ds | cés | cece | else |

Figure 4. Control register

Error reporting functionality in the error record is enabled if the error-logging-and-signaling-
enable (else) field is set to 1. The else field is WARL and may default to 1 or 0 at reset. When else is
1, the hardware unit logs and signals errors in the error record. When else is 0, any signaling
associated with prior logged errors remains unaffected, the hardware unit does not log and signal
new errors in the error record, and it is UNSPECIFIED whether the hardware unit continues detecting
and correcting errors.

The ces, ueds,

When error reporting is disabled, the hardware unit may continue to silently
correct detected errors and when correction is not possible provide corrupt data to
the consumers of the data. Alternatively an implementation may disable error
detection altogether when error reporting is disabled. It is recommended that
implementations continue performing error correction even when error reporting
is disabled.

It is recommended that a hardware component continue to produce error
detection and correction codes on data generated by or stored in the hardware
component even when error reporting is disabled. It is recommended hardware
components continue to use containment techniques like data poisoning even
when error reporting is disabled.

and vecs are WARL fields used to enable signaling of CE, UED, and UEC respectively

when they are logged (i.e. when else is 1). Enables for unsupported classes of errors may be
hardwired to 0. The encodings of these fields are specified in Table 3.

Table 3. Error signaling enable field encodings

Encoding Error signal

0

1
2
3

16

Signaling is disabled.
Signal using a Low-priority RAS signal.
Signal using a High-priority RAS signal.

Signal using a platform specific RAS signal.



The RAS signals are usually used to notify a RAS handler. The physical manifestation of the signal is
UNSPECIFIED by this specification. The information carried by the signal is UNSPECIFIED by this
specification.

The error signaling enables typically default to O - disabled - at reset to allow a RAS
handler an opportunity to initialize itself for handling RAS signals and to initialize
the hardware units that generate the RAS signals before error reporting is enabled.

The signal generated by the error record may in addition to causing an
interrupt/event notification be also used to carry additional information to aid the
RAS handler in the platform.

The RAS handler may be implemented by a RISC-V application processor hart in
the system, a dedicated RAS handling micro-controller, a Finite-State Machine
(FSM), etc.

The error signals may be configured, through platform specific means, to notify a
RAS handler in the platform. For example, the High-priority RAS signal may be
configured to cause a High-priority RAS local interrupt, an external interrupt, or
o an Non-Maskable Interrupt (NMI) and the Low-priority RAS signal may be
configured to cause a Low-priority RAS local interrupt or an external interrupt.

When error class and/or priority-specific RAS handlers are implemented, these
handlers must take into consideration the possibility that an error record intended
for a handler could be overwritten by an error of higher severity or priority —
which also triggers a signal to another RAS handler for the new error — in the
period between the first signal’s generation and its examination of the error
record by the first RAS handler. In such instances, the first RAS handler may find
an error record that is not intended for it. This handler may choose to disregard
this error record as spurious from its perspective, and leave it to be handled by the
other RAS handler. It may also note that an error occurred that concerns it, but
information for the error is no longer available. Similarly, spurious signals may
arise if the fields controlling the type of signal generated by an error record are
modified while either the v field or the ceco field in the status_i register is set to 1.

If the error record supports corrected-error counting then the corrected-error-counting-enable
(cece) field, when set to 1, enables counting corrected errors in the corrected-error-counter (cec)
field of the status register status_i of the error record. The cec is a counter that holds an unsigned
integer count. When cece is 0, the cec does not count and retains its value. If corrected error
counting is not supported in the error record then cece and cec may be hardwired to 0. An overflow
of cec is signaled using the signal configured in the ces field. When cece is 1, the logging of a CE in
the error record does not cause an error signal and an error signal configured in ces occurs only on
a cec overflow that sets the ceco bit.

The set-read-in-progress (srdp) field, when written with a value of 1, causes the rdip (read-in-
progress) bit of the associated status_i register to be set. The srdp field always returns 0 on read.
The rdip field in the status_i register is set to 1 by hardware when an error is recorded in an
invalid error record causing the v field to change from 0 to 1. The rdip field is cleared to 0 by
hardware when a new error updates any field of a valid (v=1) error record.
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The status-register-invalidate (sinv) bit, when written with a value of 1, causes the v (valid) field of
the associated status_i register to be cleared if the rdip field in the status_i register is also 1. The
sinv field always returns 0 on read. The sinv field enables software to read out and invalidate an
error record without needing to explicitly write the status_i register. Qualifying the clearing of the
v field with rdip field being 1 prevents losing information about an overwrite that might have
occurred while reading of the error record is in progress. If the sinv and srdp are both written to 1
together then the rdip bit is set and the v bit is cleared to 0.

Software may determine if the error record was read atomically by first reading
the registers of the error record, then clearing the valid in status_i by writing 1 to
control_i.sinv and then reading the status_i register again to determine if the v
field was cleared to 0. If the v field is still 1 but the rdip field is 0 then it is

o indicative of an overwrite that may have occurred during the process of reading
the error record. If the v field is 1 and the rdip is also 1 then it indicates a new
error was recorded after the v field was cleared; but the read of the error record to
collect the previous error was atomic. If an overwrite occurred during the process
of reading the error record then the process may be repeated, after setting the rdip
field, to read the latest reported error.

The error-injection-delay (eid) is a WARL field used to control error record injection. When eid is
written with a value greater than 0, the eid starts counting down, at an implementation defined
rate, till the value reaches a count of 0. Writing a value of 0 disables the counter. If error injection is
not supported by the error record then the eid field may be hardwired to 0. When eid reaches a
count of 0, the status register is made valid by setting the status_i.v bit to 1. The status_i.v
transition from 0 to 1 generates a RAS signal corresponding to the class of error (CE, UED, or UEC)
setup in the status_i register. The counter continues to count even if the status_i register was
overwritten by a hardware detected error before the eid counts down to 0.

Software may setup the error record registers with desired values of the error
record to be injected and then program eid to cause the status_i register to be
marked valid when eid count reaches 0.

The error record injection capability only injects an error record and not an error
into the hardware itself. The error record injection capability is expected to be

o used to test the RAS handlers and is not intended to be used for verification of the
hardware implementation itself.

Other implementation specific mechanisms may be provided to generate and/or
emulate hardware error conditions. When hardware error injection capabilities
are implemented, the implementation should ensure that these capabilities cannot
be misused to maliciously inject hardware errors that may lead to security issues.

18



2.4.2. Status Register (status_i)

The status_i is a read-write WARL register that reports errors detected by the hardware unit.
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Figure 5. Status register

The error record holds a valid error log if the valid (v) field is 1. The status_i register does not
accept a software write when the v field is 1.

If the detected error was corrected then ce is set to 1. If the detected error could not be corrected
but was deferred then uved is set to 1. If the detected error could not be corrected or deferred and
thus needs immediate handling by an RAS handler, then the uvec bit is set to 1. If the error record
does not log a class of errors (e.g., does not support UED), then the corresponding bit may be
hardwired to 0. If the bits corresponding to more than one error class are set to 1 then the error
record holds information about the highest severity error class among the bits set. The error record
may be used to provide an informational update by setting the v bit to 1 and setting ce, ued, and uec
bits to 0. Such informational updates are lower severity than a CE but are signaled using the signal
configured in control_i.ces.

When v is 1, if more errors of the same class as the error currently logged in the error record occur
then the multiple-occurrence (mo) bit is set to indicate the multiple occurrence of errors of the same
severity. See Section 2.5 for rules on overwriting the error record in such cases.

Each error of an error class (CE, UED, or UEC) that may be logged in an error record may be
associated with a priority which is a number between 0 and 3; priority value of 3 being the highest
priority and priority value of 0 being the lowest priority. The priority values indicate relative
priority among errors of the same error class and therefore represent sub-classes of errors. Among
errors of different error classes the priority values are unrelated.

Some implementations may report errors from more than one sources into a
single error records. Such implementations may prioritize reporting of error from

o one source over the other using the pri associated with the error when both
sources simultaneously detect an error of the same class (e.g., CE). The priority is
also used to determine if a new error may overwrite a previously reported error of
the same error class in the error record.

The priority (pri) field in the error record indicates the priority of the currently logged error in the
error record. The pri is a WARL field and an implementation may support only a subset of legal
values for this field and an implementation that does not support reporting of a priority per error
may hardwire this field to 0.

19



The error record overwrite rules use the error class (CE, UED, or UEC) and the error priority (pri) as
specified in Section 2.5.

When an UEC occurs the containable (c¢) bit may be set to 1 to indicate that the error has not
propagated beyond the boundaries of the hardware unit that detected the error and thus may be
containable through recovery actions (e.g., terminating the computation, etc.) carried out by the
RAS handler. The c bit is WARL. For error classes other than UEC, the interpretation of the c bit may
be specified in a future standard extension.

For a RISC-V hart, some UEC may cause a Hardware Error exception [17]. A Hardware Error is a
synchronous exception, triggered when corrupted or uncorrectable data is accessed, either
explicitly or implicitly, by an instruction. In this context, "data" encompasses all types of
information used within a RISC-V hart.

For example, a RISC-V hart by causing the precise hardware error exception on
attempts to consume corrupted/poisoned data may contain the error to the
program currently executing on the hart. Such errors may be reported with the c
bit set to 1 indicating that the interrupted context may be restarted if the RAS
handler is able to perform a suitable recovery operation. The xepc CSR on delivery
of the hardware error exception holds the address of the instruction that

o attempted to access corrupted data, while the xtval CSR is either set to 0 or holds
the virtual address of an instruction fetch, load, or store that attempted to access
corrupted data.

While the c bit indicates that the error may be containable the RAS handler may or
may not be able to recover the system from such errors. The RAS handler must
make the recovery determination based on additional information provided in the
error record such as the address of the memory where corruption was detected.

The address-or-info-type (ait) is a WARL field that indicates the type of information reported in the
addr_info_i register. An error record that does not report information in this field may hardwire
this field to 0. The encodings of the ait field are listed in Table 4.

Table 4. Address-or-information type encodings

Encoding Description
0 None. The contents of the addr_info_i register are UNSPECIFIED when ait is 0.
1 Supervisor Physical Address (SPA).
2 Guest Physical Address (GPA).
3 Virtual Address (VA).
4-15 Component-specific address or information.
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Component-specific information types, as defined in the range 4-15 of the ait field,
may be used to report component-specific addresses or other component-specific
information in the register. The component-specific addresses may include
information such as a local bus address or a Dynamic Random-Access Memory
o (DRAM) address. The interpretation of such information is component-specific.

When a standard address type (a VA, SPA, or GPA) is reported in the addr_info_i
register, additional non-redundant information about the location accessed using
the address (e.g., cache set and way, etc.) may be reported in the info_i and/or the
suppl_info_i registers.

The transaction-type (tt) is a WARL field to report the type of transaction that detected the error
and its encodings are listed in Table 5. An error record that does not report transaction types may
hardwire this field to 0.

Table 5. Transaction type encodings

Encoding Description
0 Unspecified or not applicable.
1 Designated for custom use.
2-3 Reserved for future standard use.
4 Explicit read.
5 Explicit write.
6 Implicit read.
7 Implicit write.

For a RISC-V hart, the Unprivileged specification [18] defines memory accesses by instructions as
either explicit or implicit. An Implicit read or write is an access that may be implicitly performed by
hardware to perform an explicit operation. For example, a load or store instruction executed by the
hart may perform implicit memory accesses to page table data structures. Instruction memory
accesses by a hart are termed as implicit accesses by the Unprivileged specification. However, for
the purposes of error reporting, only the implicit accesses to data structures, such as the (guest)
page tables that are used to determine the address of the instructions to be fetched, are termed as
implicit accesses. The read to fetch the instruction bytes themselves is classified as an explicit read.

Implementations may report additional information about the transaction (e.g.,
whether speculative, on-demand vs. prefetch, etc.) in the info_i and/or
suppl_info_i registers.

A non-hart component may also perform implicit accesses in order to process an
explicit transaction. For example, processing a memory transaction may require a
fabric component to implicitly access a routing table data structure.
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If the detected error reports additional information in the info_i register then the information-
valid (iv) field is set to 1. If the detected error reports additional supplemental information in the
suppl_info_i register then supplemental-information-valid (siv) field is set to 1. The iv and/or siv
fields may be hardwired to 0 if the error record does not provide information in info_i and/or
suppl_info_i registers. When iv is 0, the value in info_i register is UNSPECIFIED. When siv is 0, the
value in suppl_info_i register is UNSPECIFIED.

If the error record holds a timestamp of when the last error was logged in the timestamp_i register
then the timestamp-valid (tsv) field is set to 1. This field may be hardwired to 0 if the error record
does not report a timestamp with the error. When tsv field is 0, the value in timestamp_i register is
UNSPECIFIED.

The scrub bit is valid when a CE is logged and when set to 1 indicates that the storage location that
held the data value has been updated with the corrected value (i.e., the data has been scrubbed). In
an implementation that cannot make this distinction then it may conservatively report this field as
0. When the error record is not associated with storage elements (e.g., correcting errors detected on
bus transactions) this field may be hardwired to 0. If this property is unconditionally true for a
hardware unit then this field may be hardwired to 1. For error classes other than CE, the
interpretation of the c¢ bit may be specified in a future standard extension.

The error-code (ec) is a WARL field that holds an error code that provides a description of the
detected error. Standard ec encodings are defined in Table 6. If an error record detects an error
that does not correspond to a standard ec encoding then such errors may be reported using a
custom encoding. The custom encodings have the most significant bit set to 1 to differentiate them
from the standard encodings.

The read-in-progress (rdip) field is set to 1 by hardware when a new error is recorded in an invalid
status register and is cleared to 0 by hardware when a valid status register is overwritten. When
the control_i.sinv field is written to 1, the v field is cleared to 0 only if the rdip field is 1. Gating the
clearing of the v field by the rdip field being 1 allows software to detect an overwrite that may
occur while it is in process of reading an error record.

An error record that supports the 1 setting of the cece field in control_i, implements a corrected-
error-counter in the cec field. The cec is a WARL field. When cece is 1, the cec is incremented on
each CE. If an unsigned integer overflow occurs on an cec increment then the corrected-error-
counter-overflow (ceco) field is set to 1. The cec continues to count following an overflow. The cec
and ceco fields hold valid data and continue to count even when the v field is 0.

Some hardware units may maintain a history of CE and may report a CE and may
increment the cec only if the error is not identical to a previously reported CE.

Some hardware units may implement low pass filters (e.g., leaky buckets) that
throttle the rate at which CE are reported and counted.

22



To invalidate a valid error record (presumably after having first read the error
record), software should write 1 to the control_i.sinv control bit to clear the v bit
in the status_i register of the error record. Using the sinv control to clear the v bit,
as compared to an explicit write to the register, avoids overwriting the cec and
ceco fields (which typically want to be maintained across logged errors).

o If software needs to initialize the cec and/or ceco, then a software write to the
status_i register is appropriate. Before performing the write, software should first
check for and read any valid error record, invalidate the error record, and then
write the register with the new cec and/or ceco value and with v=0. If status_i
register write was not accepted due to hardware writing a new error into the
record and setting the v field to 1, then software should repeat this process.

When an UEC or UED error is logged in an error record, the cec and ceco fields of the error record
are not modified and retain their values.

2.4.3. Address-or-Information Register (addr_info_i)

The addr_info_i WARL register reports the address or other information associated with the
detected error when status_i.ait is not 0. If status_i.ait is 0, the value in this register is
UNSPECIFIED. An implementation that does not report information in this register may hardwire this
register to 0. Some fields of this register may be hardwired to zero if the field is unused to report
any type of address or information.

When an address (a VA, GPA, or an SPA) is reported in this register, to the extent possible, the error
record should capture all significant parts of the address. However, as a function of the type of
error being logged some address fields may be zeroes. Some of the highest address bits may be
fixed or may be sign-extensions or may be zero-extensions of the next lowest address bit depending
on the type of address reported.

When component specific information is reported in this register, the interpretation of the
information is component specific.

2.4.4. Information Register (info_1)

The info_i WARL register provides additional information about the error when status_i.ivis 1. If
status_i.iv is 0, the value in this register is UNSPECIFIED. An implementation that does not report
any additional information may hardwire this register to 0.

The format of the register is UNSPECIFIED by this specification. This field may be interpreted using
the error code in status_i.ec along with implementation defined format and rules.

This register may be used to report information for guiding recovery, error nature
(transient/permanent), error location (set/way, parity group, ECC syndrome), and

o other details (protocol FSM state, assertion failures). Components that are or
monitor field replaceable units may log information in this register to identify the
failing component. For example, a memory controller may log the DIMM channel,
bank, column, row, rank, subRank, device ID, etc.
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2.4.5. Supplemental Information Register (suppl_info_i)

The suppl_info_i WARL register provides additional information about the error when
status_i.siv is 1. This information may supplement the information provided in info_i register. If
status_i.siv is 0, the value in this register is UNSPECIFIED. An implementation that does not report
any supplemental information may hardwire this register to 0.

The format of the register is UNSPECIFIED by this specification. This field may be interpreted using
the error code in status_i.ec along with implementation specific and implementation defined
format and rules.

2.4.6. Timestamp Register (timestamp_i)

The timestamp_i WARL register provides a timestamp for the last error recorded in the error record
if status_i.tsv is 1. When status.tsv is 0, the value in this register is UNSPECIFIED. An
implementation that does not report a timestamp may hardwire this register to 0. Some fields of the
register may be hardwired to zero if the field is unused to report the timestamp.

The nature, frequency, and resolution of the timestamp are UNSPECIFIED.

The timestamp may be constructed by a hardware unit using mechanism such as
o sampling a local cycles counter (e.g., the cycles counter of a RISC-V hart, a global
counter (e.g, mtime, etc.), or other implementation specific means.

2.5. Error Record Overwrite Rules

When a hardware unit detects an error and its error record is not valid, it writes the error record
with the error information and marks the record as valid. However, if the error record is already
valid, owing to an earlier detected but unprocessed error, the decision to overwrite the error
record with new error information is determined by the new error’s severity and/or priority.

The overwrite rules allow a higher severity error to overwrite a lower severity error. UEC has the
highest severity, followed by UED, then CE, and finally, informational. When the two errors have
the same severity the priority of the errors (as determined by status_i.pri) is used to determine if
the error record is overwritten. Higher priority errors overwrite the lower priority errors. When an
error record is overwritten by a higher severity error (UED/CE by UEC, UED by UEC, or CE by
UEC/UED), the status bits indicating the severity of the older errors are retained (i.e., are sticky).

When an error writes or overwrites an error record, the status i.cec and status_i.ceco fields
update from CEs and retain value for errors of other severity. When implemented, cec counts CE
occurrences; unsigned integer overflow on cec increment sets ceco to 1.

Whenever a new error writes to or overwrites an error record, the signal configured in the
control_i register for its severity level is asserted. When status_i.ceco changes from 0 to 1, the
signal configured in control_i.ces is asserted.
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Listing 1. Error record writing rules

Let new_status be the value to be recorded in status_i register for the new error
overwrite = FALSE
if status_i.v ==
// There is a valid first error recorded
if ( severity(new_error) > severity(status_i) )
// Higher severity errors overwrite less severe errors and clear mo
status_i.mo = 0
overwrite = TRUE
endif
if ( severity(new_status) == severity(status_i) )
// Second errors of the same severity set MO
status_i.mo = 1
// Second error of same severity overwrites previous error if it
// has higher priority (status_i.pri).
if ( new_status.pri > status_i.pri )
overwrite = TRUE;
endif
endif
// previous error status bits are retained (sticky) but rdip bit is cleared.
status_i.rdip = 0
status_i.uec |= new_status.uec
status_i.ued |= new_status.ued
status_i.ce |= new_status.ce
else
// No valid error recorded; new error logged, clearing sticky history
// and MO bit, and rdip is set.
status_i.rdip = 1
status_i.uec = new_status.uec
status_i.ued = new_status.ued & ~new_status.uec
status_i.ce = new_status.ce & ~new_status.uec & ~new_status.ued
status_i.mo = 0
overwrite = TRUE;
endif
if ( overwrite = TRUE )
status_i.pri new_status.pri

status_i.c = new_status.c
status_i.tt = new_status.tt
status_i.ait = new_status.ait
status_i.iv = new_status.iv
status_i.siv = new_status.siv
status_i.tsv = new_status.tsv
status_i.scrub = new_status.scrub
status_i.ec = new_status.ec

// Update addr_info_i, info_i, suppl_info_i, and timestamp_i with new
// error information, if valid.
status_i.v = 1

endif



If the status_i.v, status_i.mo, and status_i.uec are all 1 then the RAS handler should preferably
restart the system to bring it to a correct state as an UEC record has been lost. If the status_i.v and
status_i.mo are 1 but status_i.uec is O (i.e., the logged error is a UED or a CE) then the RAS handler
may keep the system operational.

If multiple errors occur simultaneously then they may be recorded individually in any order and
the rules outlined in Listing 1 lead to the highest severity error among them being retained in the
error record. When the error record registers are written by an error, all registers that are written
must be written with information related to that error.

When multiple errors occur simultaneously, some implementations may choose to
record each error individually following the rules outlined in Listing 1. Other

e implementations may however choose to only record the highest severity error or
when they have the same severity the highest priority error. And yet another
implementation may choose to record one of the errors as determined by
implementation specific rules.

2.6. Error Reporting Defined by Other Standards

Standards such as PCle [1] and CXL [2] define standardized error reporting architectures such as
the PCIe Advanced Error Reporting (AER). Specifications such as CXL define a standardized set of
RAS requirements for hosts and devices.

The RISC-V RERI specification complements the error reporting architecture defined by these
standards with a RISC-V standard for reporting errors for components that are not PCle/CXL
components. There may also be other error reporting mechanisms, possibly custom, that are
employed alongside the RERI specification.

The RISC-V system components such as PCle root ports or PCle Root Complex Event
Collectors may themselves implement error reporting compliant with the RISC-V

o RERI specification and thus provide a unified error reporting mechanism in such
systems. For example, a root complex event collector may support an error record
to report errors logged in the Advanced Error Reporting (AER) log registers.
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2.7. Error Code Encodings

Table 6. Error code encodings

Encoding

0
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28-63
64 - 255

Description

None

Other unspecified error occurred

Corrupted data access (e.g., attempt to consume poisoned data) error

Cache block data (e.g., ECC error on cache data) error

Cache scrubbing detected (e.g., ECC error on cache data) error

Cache address/control state (e.g., parity error tag or state) error

Cache unspecified error

Snoop-filter/directory address/control state (e.g., ECC error on tag or state) error
Snoop-filter/directory unspecified error

TLB/Page-walk cache data (e.g., ECC error on TLB data) error

TLB/Page-walk cache address/control state (e.g., ECC error on TLB tag) error
TLB/Page-walk cache unspecified error

Hart state error (e.g., ECC error on CSRs or x/f/v registers)

Interrupt controller state (e.g., ECC error on interrupt pending/enable state) error
Interconnect data (e.g., ECC error on data bus) error

Interconnect other (e.g., parity error on address bus) error

Internal watchdog error

Internal datapath, memory, or execution units error (e.g, ALU datapath parity)
System memory command/address bus error

System memory unspecified error

System memory data (e.g., ECC error in SDRAM or HBM) error

System Memory scrubbing detected error

Protocol Error - illegal input/output error

Protocol Error - illegal/unexpected state error

Protocol Error - timeout error

System internal controller (power management, security, etc.) error

Deferred error pass-through (e.g., forwarding poisoned data) not supported
PClIe/CXL detected (e.g., logged into PCle AER, CXL.mem error log, etc.) errors
Reserved for future standard use

Designated for custom use
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